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Abstract—An exact analytical method is suggested for the solution of a wide class of unsteady state boundary
layer problems which describe the processes of convective mass and heat transfer of particles in an ideal, and
droplets (bubbles) in a viscous incompressible, fluid. The procedure proves also adequate in analyzing
transfer processes occurring in the neighbourhood of a liquid-fluid type interface (e.g. in liquid films). The
method is based on incorporation of four new independent variables specified by a set of 1st-order partial
differential equations which allows a general solution of the linear problem subject to arbitrary initial and
boundary conditions. In addition, it affords the possibility of obtaining a wide class of non-trivial (and non-
self-similar) solutions of respective non-linear boundary value problems in the case when the diffusion
coefficient (thermal diffusivity) is a function of concentration (temperature).

A general solution is obtained for a similar linear unsteady state problem connected with the 1st-order
bulk chemical reaction occurring in the fluid. The process of convective diffusion to a particle at an arbitrary
rate of chemical reaction proceeding on its surface is studied.

It is shown that solution to the unsteady state boundary layer equation can have a strong discontinuity
which displaces at terminal speed.

Extension of the method to analogous problems of unsteady state mass and heat transfer in a compressible
fluid is indicated.

The method suggested is used for the solution of a number of specific problems. The case of linear and

hyperbolic dependence of the diffusion coefficient upon concentration is studied in detail.

NOMENCLATURE I, non-dimensional total diffusional flux to
A, A,  constants occurring in (41); the mth droplet (particle) of a chain;
A, differential operator defined in (9); J, function defining local diffusional flux
a, = Y(0), constant occurring in (25); (24);
a. characteristic particle dimension ; JsJwjp ~ mon-dimensional local diffusional flux;
B, constant occurring in (41); j%J%.j3, non-dimensional local diffusional flux
B(x. p.q), incomplete beta-function; corresponding to the linear problem at
b, Y(oc), constant occurring in (25); o=1;
c, limited concentration ; kK, non-dimensional and dimensional reac-
Coo dimensional reagent concentration in tion rate constant, respectively ;
liquid flow; L, differential operator defined in (5);
¢.c, ¢, mon-dimensional reagent concentration L non-dimensional distance between drop-
in liquid flow; lets (particles);
Co surface concentration ; m, ordinal number of a droplet (particle);
Cor characteristic concentration; n, exponent;
D,, = Da(c), diffusion coefficient ; P, = P(Q), function defined in (35);
D, surface diffusion coefficient ; Pe, =aU,D™!, Peclet number;
E, function defined in (36); 9, source;
e.e, e, direction vectors of the curvilinear co- R, function defined in (32);
ordinate system; R, surface reaction rate;
F. dimensional surface reaction rate; r, radial coordinate;
JA function occurring in (4); S, particle surface area;
G, Gee 99,5 first invariant of metric Sh, mean Sherwood number;
tensor; T, function defined in (3);
GeoGyp9i» MELric tensor components; t, non-dimensional time;
I, 1, 1; non-dimensional total diffusional flux; Ug flow velocity at infinity;
I°,1°, 19, non-dimensional total diffusional flux U, = U(r), function defined in (46);
corresponding to a linear problem at U, characteristic velocity of a particle;

o=1,; v

fluid velocity ;
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Us Uy, fluid velocity components ;

V. function occurring in (80);

X, variable occurring in (25);

Y, = Y(x), solution of the problem (25);

Z,Z;,Z, arbitrary functions depending upon the
variable w alone;

z, = z(u), solution of the auxiliary problem
(31);

H, integral operator defined in (39);

h, = h(cos 8), initial concentration distri-

bution outside of the sphere.

Greek symbols

a, shear factor;

I, Henry constant;

7 coefficient occurring in (46);

A, Laplace operator;

d, coefficient occurring in (72);

& = Pe™'? small parameter;

Z, new variable (4);

1, second (longitudinal) curvilinear
coordinate ;

0, polar angle;

K, parameter occurring in (27) and (33);

A, differential operator defined in (1);

A third curvilinear coordinate;

i, variable defined in (30);

Uy, dynamic viscosity of fluid outside of a
droplet;

sy, dynamic viscosity of fluid inside of a
droplet;

£, first (transverse) curvilinear coordinate;

o, = o(c), non-dimensional diffusion
coefficient ;

7,70, T, g NEW variable (4);

o, kernel of integral operator(68);

o, function defining the boundary condition
at the droplet surface (3);

s = y(w), Heaviside unit function;

¥, stream function analogue; stream
function;

functions defining initial and boundary

(at n = 0) conditions (3);

Q, function defining the principal term in the
stream function expansion near the par-
ticle surface;

w, new (cyclic) variable (4).

1. INTRODUCTION

LiNEAR problems of the unsteady state diffusion-
controlled (thermal) boundary layer were the concern
of a number of earlier publications (see for example
[1-10]). Thus, the authors of [1], by applying the
Laplace transformation with respect to time, have
determined the diffusional flux to the surface of a
droplet in a steady translational Stokesian flow with a
sudden occurrence of chemical reaction. In [2-6], the
analysis of a number of unsteady state boundary layer
problems was based on the use of a self-similar variable
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allowing the initial convective diffusion equation to be
reduced to the Ist-order partial differential equation
for the diffusion boundary layer thickness and to
ordinary differential equation for concentration. In
[5-9], two new variables have been introduced (which
simplify the initial problem) the determination of
which have also required the solution of the 1st-order
partial differential equation.

Introduction of new variables has made it possible
to study a number of unsteady state problems de-
scribed by the convective diffusion equation with time
dependent coefficients [3-6, 8, 9] for the solution of
which the method suggested in [1] is inapplicable.
Similar problems have been analyzed in [10] by
applying the Fourier sine transformation with respect
to the transverse coordinate. In [11, 12], some non-
linear unsteady state problems were analyzed by
invoking three (four) new independent variables. Lin-
ear problems involving the lst-order bulk chemical
reaction were considered in [13].

The present paper suggests a general method for the
solution of this type of problems which enables one to
study the respective equations in a single form.

2. CHOICE OF COORDINATE SYSTEM. STATEMENT OF THE
PROBLEM

Assuming that the fluid flow field has been found
from the solution of the respective problem on hydro-
dynamic flow, introduce a local orthogonal system
of coordinates &, # and 4 associated with the body
(droplet) surface and flow geometry in the fashion
similar to that described in [14]. To do this, determine
the direction of the unit vectors e, e,, e, at any point M
located near the particle (Fig. 1). The point M’, nearest
to M on the body surface, specifies the direction of e,
while the segment |[MM’| determines the non-
dimensional coordinate ¢ = &(MM'|), where the
length scale is the characteristic body dimension (e.g.
sphere radius). Without the limitation of generality,
the coordinate £ is chosen so that £ = O corresponds to
the body surface and (g..). _, = 1. The direction of e, is
determined by the fluid velocity vector projection at
the point M onto a plane normal to e,, while e, is
selected so that the system of vectors e, e;,, e, forms an
orthogonal right-handed triad (Fig. 1).

In this coordinate system, the fluid velocity vector at
any point of a 3-dim. flow has in general the form v =
{vs, v, 0}. Note that here, as distinguished from the
stationary flow field, the directions of the unit vectors
e e, €, and the metric tensor components g, g, 9,
are time-dependent (reckoning of the curvilinear coor-
dinates », and A is of little importance for what
follows and can be done in the same way as in [14];
0<A<2n).

Let the stagnation point on the body surface, at
which a special streamline approaches the surface and
in the neighbourhood of which the normal fluid
velocity component is directed toward (from) the
surface, be referred to as the incidence (run-off) point
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F1G. 1. Curvilinear orthogonal system of coordinates &, 1, A
associated with the body surface and stream lines.

and the streamline originating from it, as the incidence
(run-off) trajectory.

For an incompressible fluid, stream function ana-
logue ¥ can be introduced, ¥(z,0, 7, A) = 0, so that the
fluid velocity components can be expressed [14] as

gff a‘P gym (‘;"P
), = — = v, = = ,
bs G o " NG &

0, =0; G=9:9,9:
In the plane and axisymmetric case, ¥ coincides
with the ordinary stream function. In the case of a
steady state flow, the surfaces ¥ = const. have a simple
physical meaning specific of the translational flow. The
incidence trajectory at a distance from the particle is a
straight line then. The isolated fluid elements equally
spaced from this straight line at a distance from the
particle can give a clear picture of the ¥ = const.
surface if followed in a fluid flow past the particle.
In the system of coordinates &, #n, 4, the non-
dimensional convective diffusion (heat conduction)
equation in the boundary layer approximation is
written as

3 é
Ae. o(c)) = %; + (W) - azaiéo(c)é —0, (1)
1 /&Y éc ¥ éc
L A %)

9=1[G)iep, ¢* =Pe=aU,D"!

0</9Q '<w0<t, E<, 0<n<n )Q2)

Here ¢, = c,cis the concentration, ¢, characteristic
concentration (e.g. concentration on the particle sur-
face), Pe the Peclet number, a, and U, the characteris-
tic dimension and velocity of particle, D, = Do(c) the
diffusion coefficient, g = g(t,n, A)and Q = Q(¢,#, 1) the
familiar functions of time t and coordinates 5, A
determined by the body shape and local field of
velocities near its surface; n = 0 corresponds to the
point in the neighbourhood of which the boundary
layer is formed (for n = O there is the point N in Fig. 1).

The approximation (2) for the stream function
analogue W (linearity in &) is frequently used, and is
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valid for the boundary layer, in the problems on mass
transfer of drops and bubbles (liquid films) in viscous
flow of the majority of water-type liquids, and in
thermal problems (potential flow), for media such as
liquid metals [1-14]. The coordinate . appears in
equations (1), (2) only parametrically and is omitted in
what follows.

Consider equation (1), (2) subject to the following
initial and boundary conditions

t=0, C=l//z(f,’7);
n=0,c=y,u1,0);{=0, c=9lt,n) (3)

and the condition of solution boundedness at ¢ — « ;
here ¥, ¥, ¢ are some specified restricted and
continuous functions.

It should be noted that in case the problems do not
involve a characteristic length (see e.g. an extract sol-
ution in Section 10), it is more convenient to use a
dimensional equation which can be formally derived
from equation (1) at ¢ = 1 employing the replacement
of o by D, with corresponding dimensional quantities
being taken for coordinates, time and stream function.
No proviso is further made concerning this fact, and it
is assumed that this operation can be performed in
final results where required.

3. DESCRIPTION OF THE METHOD. EQUATIONS FOR NEW
VARIABLES

In order to solve the problem (1-3), introduce
(similar to [11, 12]) new variables

o=l {=ifly t=ttn). @)
The initial equation (1), (2) will then take the form

dc i de de
Lo — + ' {Lf— —Q'f |— + Lt —
el (f J9 ”f>5§+ =
d ac 0 Q ¢ o0
=f*— - =—4+— —, Q@ =—. (5

Self-similar solutions of equation (1) can be ob-
tained from (5) by assuming ¢ = ¢({) and requiring the
equality (which is an equation for determining the
variable {):

ST~ g7t Q) =12 6)

The distribution of concentration will then obey the

ordinary differential equation
e, = (ole)c)y (7)

It should be noted that in [2-4] the analysis of a
number of linear problems (¢ = 1) was actually
performed by the method based on equations (6) and
(7). In[7-9], a two-parametric solution of the type ¢ =
¢(¢, t) was sought for linear problems.

Of course, the self-similar solutions of the type (6),
(7) or the results obtained in [ 7-9] do not exhaust all
possible solutions of equation (1).

In the general case, to analyze equation (1), (2), we
shall use all three new variables (4) and impose the
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requirement that the functions w, f and © should
generate the following system of partial differential
equations [11, 12}:

Lo=0, Lf=g"'2Q,f Li=j? ®)

the general solution of which is

w =0t [=2io) exp{ J:(?:} mg> dn},
[

"
T= { {V;QQ— §,}1’2}((»} é?} + gr{m)'

Here and subsequently the notation §,,, dn (or 5,
dt) in the integrand means that the function S(t, n) is
written by the expression for @ = wf(t,#)in terms of the
variables @ and n {or w and 1) and, in performing the
integration, w is taken to be a parameter ; w is any non-
trivial solution of equation (8), Z, and Z, are arbitrary
functions depending upon « alone.

After employing substitution {4) and (8), equations
(1) and (2) take the form:

A e
Al {)c= 2‘2 - :?:G(C)(—;i =0, ¢=clw{,1).9)
dr & ol

Equation (9)is much simpler than theinitial one, (1),
(2), and does not involve the variable « which is quite
analogous to the cyclic variables in analytical me-
chanics. The appropriate initial and boundary con-
ditions (3) should be written in terms of the variables
{4) and (8), which reduces the initial boundary value
problem (1-3) to an ordinary heat conduction equa-
tion depending on the parameter w.

The transformation (4), (8), (t, &, 1) — (w, {, 7) (if it is
non-degenerate) is complete in the sense that no loss of
any solutions to the initial equations (1) and (2) occurs
when passing to equation (9}.

4. CHOICE OF VARIABLES. INITIAL AND BOUNDARY
CONDITIONS

In choosing the specific form of the variables (4)and

(8), it is necessary to distinguish between the two cases:

(@) lim (1/9Q2" ") =0,
70

(b) lim (1/gQ™ ") >0,

{0
in which the integral curves of characteristic equation
=g} (10)

corresponding to the operator L, show a substantially
dissimilar behaviour. In the first case it is a non-trivial
integral curve of equation {10) which passes through
the coordinate origin in the plane 5, ¢ (Fig. 2), while in
the second case such an integral curve does not exist
{Fig. 3).

The Case (b) usually holds for the problems when »
= () corresponds to the stagnation point on the body
surface {(point N in Fig. 1).

Case {a). The first two variables (4), (8) throughout
the flow region are selected in the form
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wlt,n) = —t +tn),

tid 3
f= epo <i1n9> dn}. (1
IR 57} {wi

Here 1(y) is the solution of the characteristic equation
{10} restricted by the property {0) = O; 5, €[04} is
anything.

In choosing the variable =, (4) and (8) it should be
noted that in the region @ < Gtheintegral curves of the
characteristic equation (10) intersect only the axis ¢
and therefore the solution in this region depends only
upon the boundary condition (3)at y = 0 and does not
depend upon the initial condition at r = 0; in the
region @ > 0 the integral curves intersect only the axis
n and here the solution depends only upon the initial
condition (3) at ¢ = 0 and does not depend upon the
boundary condition at n = 0 (Fig. 2). This means that
distribution of concentration on one side of the curve
= Ois not affected by the initial, and on the other by
the boundary, condition.

It should be noted that equations (1), (2) have the
particular solution ¢ = Z{w) (£ is an arbitrary
function), which, at ¢, = ¥ {n), ¥, = ¥ ,{r) and inert
boundary conditions dc/é¢ = 0 on the particle surface
£ =0, may conform to the initial and boundary (at n=
0) conditions (3) due to the choice of the function Z
(Z can be a discontinuous one; thus, att = 0,¢c = 1;
n = 0,¢ = —1 we have ¢ = sign w). Because of this
situations may occur in the boundary layer problems

i =
- // CiE) i

o —]O1E e 7

Fic. 2 B_ei‘savieur of integral curves of the characteristic
equation corresponding to the operator L {Case a).

Tl
[ %

&5 const

F16. 3. Behaviour of integral curves of the characteristic
equation (10} in Case (b).
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of unsteady state convective diffusion which involve
concentration discontinuity as a consequence of the
hyperbolic nature of the initial equation (1) with
respect to the variables ¢ and .

With the above in mind, let us introduce two time
dependent similar variables 7, and 1, (here and sub-
sequently the quantities associated with the region w
> 0 are indicated by the subscript «, and with the
region w < 0, by the subscript f), either of which is
continuous in its own domain, satisfies the last of
equations (8) and is determined by the boundary
conditions

t=0, 7,=0;, n=0, 7,=0. (12)
The solution of problems (8) and (12) is:
t
T,= Ta(t, ’1) = J fz(w)dt = Tﬁ - TB(O’ T(ﬂ))), (13)
0

5= 1,(0,0) = Jn (V92 ') dn; T((0, n)) = 7.
0 (14)

Expressing the former variables t, &, 7 in terms of the
new ones w, {, 7 (4), (8), (13) and (14) in each region of
one-signed w (the Jacobian of this transformation
differs from zero) and substituting them into (1-3) for
the concentration distribution yield:

¢ = ylwlew, {, 1) + x( —w)egw, {, 15)  (15)

(@) 0,at w <0,
w) =
x lI,at w > 0.

Here y(w) is the Heaviside unit function, while the
functions ¢, and ¢, are determined by the solutions of
the following boundary value problems:
A(t,Qc, =0; 7.=0, ¢, =¥ (o );

¥

(16)
{=0,c,=0,0)y=0af;¢lt,w0)=

o(t(r,, @), 1T, 0)); Y, = Y elf 71O, T(w)),

T(); ¥y = Yy~ o, el fH(~w, 0))

It is seen that the initial problem (1-3) with the
variable coefficients has simplified substantialily to the
equation with constant coefficients (9) which depends
only upon two variables, { and 7 (and no longer on w),
and to the boundary conditions (16), which depend
parametrically upon the third cyclic coordinate w.

Equation (9) occurs frequently in the theory of non-
linear heat conduction [ 15, 16] and filtration [17] and
there are already its exact analytical, approximate or
numerical solutions (under certain initial and boun-
dary conditions) for many functions ¢ = o(c) (see
Section 6).

In general, the solution of the problem (1-3) be-
comes discontinuous in passing through the character-
istic w(t, n) = 0 (11) (Fig. 2). For this reason, the
diffusional boundary layer approximation (1-3) by
itself proves to be unjustified close to the front y = T(r)
moving with the velocity u = (¢~ Q),, _ 5, within
the region |w| < O(¢), & « 1. Physically this implies the
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presence of large concentration gradients in the region
and necessitates the use of complete convective
diffusion equation in the vicinity of w = 0. The
problem on concentration distribution in the neigh-
bourhood of the front n = T(t) can be formulated by
the method of matched asymptotic series expansions
[12, 18].

It should be noted that even though the boundary
layer solution is inapplicable in the region [y — T(1)|
< O(s), it provides, when used at n* = O(1), a correct
result for the principal term of asymptotic expansion
(in the parameter ¢ « 1) for the basic characteristic of
the process of transport, i.e. the integral inflow of the
reacting substance (heat) to the body surface.

Case (b). Here all of the integral curves of the
characteristic equation (10) intersect the axis ¢ alone
and keep clear of the axis # (Fig. 3). This implies that
only the condition (3) at t = 0 can here be satisfied,
while the boundary condition at y = Ofor the arbitrary
function ¥, can no longer be imposed [just as the
second condition for the variable 7 in ( 12)]; here, one
can only require compliance with the (weak) condition
of boundedness for the solution |¢| < = atn - 0(orin
an axisymmetric case—the condition of axial sym-
metry dc/dn = 0 atn = 0). In Case (b), the diffusional
boundary layer equations (1) and (2) are uniformly
applicable in a small parameter ¢ (and its solutions are
smooth) to the entire flow region. The variables w, {, t
(4)and (8) should also be chosen in the form of (11) and
(13), with the difference that the condition t(0) = 0
does not hold now [there being instead the condition
t(n,) = 0, with n, e (0, n*) anything]. With the
replacement such as this, the problem (1-3), subject to
the condition of solution boundedness instead of the
boundary condition at # =0(3), is reduced to (15) at y
= « and all what has just been said for Case (a) will
also hold here. The solution of the respective non-
linear problem (1-3) in this case is prescribed by the
first term of equations (15) and (16):

¢ =c,{w,{, 1,) (17)

In Case (b) it is also meaningful to consider the
solutions to equations (1) and (2) that satisfy the
boundary condition at infinity at { —» o instead of the
initial condition at 1 = O(3) [8, 9] (see the comment
at the end of section 6).

It should be noted that to choose the variables (4)
instead of (11), (13) and (14) for the solution of
particular problems it is frequently more convenient to
directly employ equation (8).

5. LINEAR CASE. PROBLEMS WITH VOLUMETRIC
REACTION

In the linear case (¢ = 1) the problem (1-3) is
reduced to a respective boundary value problem for an
ordinary linear heat conduction equation with con-
stant coefficients (9), (16) the solution of which is well
known. The concentration (temperature) distribution
is then prescribed by formula (15) [or (17)] where the
functions ¢, and c; are determined by:
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C. =

T, v

! s
K s O d"* —_ —_——
X l//,(w 5 ) 5 + 2\/7[ J;) (Ty _ )»)3'2

“2
X exp[— 4—“1_—;)] x @ (w,A)di;y=a,p.
(18)

Equations (15) and (18) extend the results of [ 1-10]
to the arbitrary initial and boundary conditions (3).

The problems involving the 1st-order bulk reaction
are described by

Ale,1)= — ke, k=kaU™! (19)

by equation (2) and initial and boundary conditions
(3). Here k' is the reaction rate constant.
In this case the substitution

—kt

c=¢eMu (20)

reduces the initial problem (2), (3) and (19) to the
following boundary value problem to determine the
function u

Au1)=0;1=0, u= u:[/jl’.;;
E=0, u=¢* Yr=y, Yi=c"Y, o*=cp.
(21)

¥n=0,

It is seen from comparison of equations (1) and (21)
that in the case of the lst-order bulk reaction the
problem (2), (3) and (19) has reduced to the solution of
an auxiliary problem for the function u with the
volumetric reaction absent. The function u is therefore
described by (15) and (18) with the respective replace-
ment of c by uand ¥, ¥, @ by ¥, 4, @*, whereupon
concentration distribution is determined by (20).

Note, that if the right-hand side of equation (1)
contained the source g = ¢(t, 5, &), then the right-hand
side of the final equation (9), upon transformations (4)
and (8), would have the term gf 2. In the linear case
(6 =1) the solution of such a non-uniform problem for
equation (9) is well known and therefore is dropped
from consideration.

6. EXACT SOLUTIONS OF SOME NONLINEAR BOUNDARY
VALUE PROBLEMS
A wide class of non-trivial solutions for the non-
linear boundary value problem (1-3) can be obtained
for the following functions occurring in the initial and
boundary conditions (3):

o=, Y= ,t); Le =0.

The last condition in (22) implies that the boundary
condition at ¢ = 0(3), written in terms of the variables
(4), (8), depends only upon the cyclic variable w, ie. ¢
= ¢(w); in particular, this condition is satisfied by ¢
= const.

(22)

1 (- %P (C+ )
o R e Rt R e

By virtue of (9), (15) and (16), the solution of the
problem (1-3) and (22) as well as the local diffusional
flux to a reacting surface in Case (a)can be presented as

¢ = ylw)e, + (- )y, (23)

¢, = Y<2f/r1, Plw), l//«[T(w)])

¢ = Y(E\;T,, (o), wﬁ(—w)>,

. [éc _ rlwy
J= ((?'5>::0 = m-’(q’(w)a l//a[T(w)])
-y

+ m J(p(w), ‘/’/}(‘w)),

Jla,b) = J(g;a,b) = [a(Y)Y' ], -0 (24)

Here, the function Y(x,q,b) is the solution of the
following ordinary differential equation

[a(N)Y. ], + 2xY, =0; Y(O)=a; Y(+ %) =b,
(25)

which depends upon the parameters a and b.

In Case (b) the solution of the problem (1-3) and
(22)1s prescribed by ¢ = ¢,, where ¢, is defined in (23).

Equation (25) occurs frequently in the problems of
non-linear heat conduction and filtration [15-17] and
its solution has already been obtained for many
relations ¢ = o(c).

It should be noted that since the form of the
variables (4) and (8) does not depend upon the
diffusion coefficient (thermal diffusivity) a(c), solutions
of a number of specific problems can be obtained by
directly combining familiar solutions of equation (25)
for different modes of flow past droplets, bubbles,
liquid films, etc. (see e.g. [ 1-12]). The mode of flow will
then determine only the form of the variables (4), (8)
entering into equations (23), (24).

With the above discussion in mind, let us point out
the solutions of the problem (25) which appear for
some frequently encountered specific relations ¢ =
o(c); Sections 8-10 are devoted to some physical
statements of the problems which correspond to
different types of flow and define the form of the
variables (4) and (8).

In the simplest linear case, at the constant diffusion
coefficient 6 = g, the solution of equation (25) is

Y(x,a,b)=a + (b — a)erf<~\7'\;7—>.
1]

Now consider the most frequently encountered
linear dependence (approximation) of the diffusion
coefficient (thermal diffusivity) on concentration

(26)

alc) = a,(1 + Ke). (27)
The replacement
1+ kY
z= ——x~—, U= Ll (28)
ool +xb) 1+ kb
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reduces the problem (25) and (27) to

(L), + 2zu, = 0; §u(0) = 4, wu(x) =1,

i=(1+xa)(l +xb)"L (29)

Introduction of the new variable [ 17] makes it possible
to represent the solution of (29) in parametric form as

dz u
u=up)=—, Z=dM=J'M% (30)

dp 0
where the function z(y) is the solution of an auxiliary
problem
3z 2z
w‘f- 2Zd—/17=0; 2(0) =0,

z0)=4, z(x)=1 (31)

The problem (31) is frequently encountered in the
theory of hydrodynamic boundary layer; for 4 = Oits
solution was obtained by Blasius (see e.g. [19]). The
case A # 0 was considered in [20, 21].

For practical purposes the greatest interest attaches
to an equation for the diffusional flux (24) which is
defined by the expression for J. Using the formula
(du/dz), _o = (u,/2}), -0 and the results of [20] we
obtain

J(@, b) = /oo k(1 + xb)*” RG—I%). (32)
Here the function R = R(4) is defined by the equa-
lity z;,(0) = R(4), has the properties R(0) = 0.33206,
R(1) = 0 and is shown in Fig. 4.
At 4 =~ 1 the function R is determined from the
asymptotic equation [20]

ATV — 1 =1.7728 — 0.59¢%, &= i"32R.

Note that the problem (29) has been studied by
numerical and approximate analytical methods in
[17, 22].

In a number of problems (associated, for instance,
with adsorption) the following expression for the
diffusion coefficient can be met

-08H

6 | 1 !
~-04 04 1.2 20

FiG. 4. The curve R = R(4) [20].

a(c) = 61 — ko)™ (x 2 0). (33)

According to [16, 23] the solution of the problem
(25) and (33) can be presented as

Y=x"'[1l-(l —kbye 2]

o o 12 OE\™!
r=e |:2P(1—Kb) [W’<a_w> ]

E=E(wP) = f (32 — PIni3)~ 12 d),

0

P=P<1_Ka>, (1<w< + ). (34)

1 — kb

The dependence of Y = Y(w), x = x(w) on w(34)
parametrically determines the form of the function Y

= Y(x), with the value of the parameter P = P(Q)
being found by solving the transcendental equation

InQ = —2E(1, P) [P(0)=0]. (35)

Figure 5 shows the function P = P(Q) which
corresponds to equation (35).

Taking into account that to the reacting surface x =
0 there corresponds the value of the parameter w = 1,
we obtain the following equation for the quantity J,

which defines the diffusional flux (24),

-1 —ka)]'? L= xa) T
J(a,b) = k! [80¢(1 — ka)] [P<1 — kb ):I
(36)

An exact analytical solution of the problem (25)at b
= 0is suggested in [23] for the following dependence
of the diffusion coefficient upon concentration (see also

[16]):
o(c) = ao(l + ke +ve?)~ L

For thermal problems, in the case of exponential
dependence of thermal diffusivity upon temperature,

(37

the solution of the problem (25)and (37)at b = Qs of
the form (see e.g. [11, 24]):

Ye) = {a(l =2 pmpT'On) at 0<z <1

alc)=04,c", n>0

0 at l<z<x
(38)
o8-
o6
Q
o4
o2
) 1 1 I 1 H | ] [
-20 -15 -10 -05 0O 05 1.0 .5 20 25

in P

FIG. 5. Relationship P = P(Q) obtained by the solution of the
transcendental equation (35).
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x %
z= q———-(n)m’ plz,n) = kgo a2,
g(n) = [np"(O,m)] 712, oo =1,
1
2n(n + 1)’

1+ 0.5¢,(6n* +n —3)
32n+ 1)

oy = =

oy = — o

L}

The function (38) is a generalized solution of the
problem (25), (36) and has a discontinuous derivative
at z = 1 (the flux a(c)@c/d¢ in this case remaining
continuous); g(1) = 1.143 [17].

A detailed description of the procedure of numerical
integration of equation (25) as well as the results of
integration for the case of exponential dependence of
the diffusion coefficient upon concentration, g(c) = o,
exp (xc), are presented in [25].

When the diffusion coefficient depends arbitrarily
upon concentration, one can use numerical or approx-
imate analytical methods for the solution of the
problem (25) [15, 16]. Thus, one can employ the
following approximate iterative method to determine
the function Y [15, 16]

Y (xab)=a+ (b— a)H< il )H"(-F x);
a(b)

m=0,1,...

(39)

H(X)ZJX expl:_ J’X 2xdx:ld_)£’ o, = O'(b)_
0 0 Oy 0% (Y1)

Here, as an initial iterate Y,, we take the solution (26)
which corresponds to the constant diffusion
coefficient. At m = 1 equation (39) yields rather
satisfactory results at small values of the derivative
|0a/c| « 1.

Moreover, when the diffusion coefficient is restricted
over the entire concentration range, the function ¢ =
a(c), depending upon its form, can be approximated
according to equation (27) or (33) by a suitable choice
of the free parameters o, and «.

Remark. For an unsteady state flow in Case (b)itisa
sound plan to consider also the solutions of equations
(1)and (2) satisfying constant boundary conditions on
the particle surface and at infinity. Then the equation

-=Y—; ,a.b
o (2;%“)

yields the solution of the problem (1) and (2) subject to
the boundary conditions

£=0,

c=a;¢—> x, c—blab=const)

and the initial condition which corresponds to sta-
tionary concentration distribution in the flow Q(0, )
at t < 0. This type of a problem describes mass and
heat transfer of the particle moving with a variable
velocity at t > 0 which was initially at rest 8, 9].
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7. COMPUTATION OF THE MEAN SHERWOOD NUMBER
AND OF THE INTEGRAL DIFFUSIONAL FLUX TO A
REACTING SURFACE

The mean Sherwood number Sh and dimensionless
integral diffusional flux I are determined by

I=ShS=des<S=j1ds\). (40)

Here sand S are the surface and (dimensionless) area of
the reacting particle surface.

Let us consider the specific case of the initial and
boundary conditions (3), (22)

W,=A, W;=Ap ¢=B(A,A,B = const).
(41)

Now, let us keep in mind that the local diffusional flux
j°, corresponding to the linear problem ¢ = 1, (24)and
(26),in Case (a)at A, = A; = 1, B = 0in (22), (41) has
the form

J* = 1)ig + x(— o),

= e 2y = ap

Comparison of equations (24), (41) and (42) gives the
following expression for the local diffusional flux to the
particle at an arbitrary dependence of the diffusion
coefficient on concentration for any values of the
parameters A4,. A; and B in (41)

(42)

j= 4‘ x(w)J(B,A)° + \4 #(— w)J(B, A)jg.

Integration of this relation over the particle surface s
yields

= Sh§ = y(w)l, + y(—w)l,
I=1g,4,A4B,t},

PV J(B, A, (43)

*T 2
NP
Iy == JB. A,

Here I° = y(w)I] + x(— w)I§is the integral diffusional
flux corresponding to the linear problem ¢ = 1 at 4,
=A;=1,B=0iel°=1I(1,1100.

In Case (b), the formula I = I, where [ is defined in
(43), should be used for the integral flux.

Equations (43) allow an effective calculation of the
integral diffusional flux and mean Sherwood number
when the diffusion coefficient is an arbitrary function
of the concentration provided appropriate expressions
for the linear problem (¢ = 1) are known as well as the
functions J (24) which are determined by solving the
ordinary differential equation (25). Thus, for the
specific cases of the diffusion coefficient dependence
upon concentrations {(27) and (33) the functions J are
determined by equations (32) and (36). Moreover, a
number of linear problems are available at present for
which the value of I° has already been calculated (see
eg [1, 2, 7-9).
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8. UNSTEADY STATE DIFFUSION TO A SPHERE (DROPLET)
IN TRANSLATIONAL AND SHEAR FLOW

Consider now some specific cases when the function

Q (2) can be represented as a product of two factors.

Q,n) =U®XW0), g =gn). (44)

In this case it is convenient that the variables w and f,
(4) and (8) be taken in the form

w:-j'ymj" JoX™dn, f=X)
My (45)

Formulae (45)are more practical than (11); they can
be obtained directly from equation (8) (see remark at
the end of section 4).

1t should be noted that if any specific solution of the
last equation from (8) is known 1, (e.g. 7, or 1), the
variables 7, and 7, (13), (14) for the solution of specific
problems can be also determined in another manner
on the following simple grounds. For any function Z
the expression 1, + Z(w) is also the solution for the
last equation from (8). Therefore, by virtue of the
boundary conditions (12) the variables t, and 7, are
determined by 1, , = 1y + Z, ylw), where the explicit
form of the functions Z, and Z is found by solving the
equations

[to+Z.Ji-o=0and [, + Z;],.,=0.

As an illustration of the method suggested let us
determine the quantities occurring in (22) and (23) for
the unsteady state heat and mass transfer of a sphere
moving in an ideal liquid with the velocity U,U(¢)

un=>10+y)"1, y=0. (46)

The dimensionless variables and the coefficients in
equation (1) and (2) are determined then [7] by

E=r—1, g=sin?f, Q= %U(t) sin’f, (47)
where the characteristic scales are taken to be the
sphere radius a. and its tripled velocity at time zero, U,
= 3U,;r, 0 is the spherical coordinate system fixed at
the sphere center; the angle 8 is calculated from the
forward stagnation point of the sphere.

Suppose one side of the sphere surface 0<0<8,,
0<0,<n in the vicinity of the flux incidence point
contains a varnished inclusion (Fig. 6) (which cor-
responds to the boundary condition £ = 0,0 < 6 < 0,
Oc/d¢é = 0), while the other side, in the region 6, < 0 <
n, absorbs the substance completely which corres-
ponds to ¢ = 0 in the boundary conditions (3) and
(22).

Using equations (13), (14), (44) and (45) for the
variables (4), we obtain (1, = 8,):

o(t,0,0,) = w, (1,0} — ©,(0,6,), f= %sinzo,

1 6
w, (1, 0) = ;ln Uty + In tgzi(r, =0~ 0,),
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F1G. 6. Scheme of flow around a sphere (hatched area
corresponding to a varnished inclusion).

T, = de 7 I:B(S(w*), 2479,2—79)

0
_B<C082§’ 249,2— y>] (48)

Tp= 4e 1o [B(coszgz—o, 249,2— ’;J)

0
—B(coszi, 2+7y,2- y)il,

S(w,) = (1 +e»)” Y

B(x,pq) = f AP — At da,

0
Here B(x, p, q) is the incomplete beta-function.

In the specific case of a steady state flow U(t) = 1,
taking into account

lim [U()] V" =¢

y—=0
and taking the limit as y — 0 in (46), we obtain from
(48)

T, =1(cosf) — 1 (—th %),

7, = 1(cos ) — (cos §,)

1

) =2+ 21 - x)%,

,0
Wy = —t+1In tg 5 (49)

Equations (47) and (49) at U = 1 also correspond
to the unsteady state diffusion to a spherical droplet
in a translational Stokesian flow (the Hadamard-
Rybchinsky stream function) moving with the velocity
U, at infinity provided the characteristic scale is taken
tobe U, = Ug p,(u; + u,)” ', where y, and yu, are
dynamic liquid velocities inside and outside of the
droplet.

In the simplest linear case 6 = 1, when motion of a
sphere in liquid is governed by (46)and (47) for the case
(41) at B = 0, the solution of the problem (1-3) and
(47) in the region 6, < 6 < nis, by virtue of (48), of the
form

¢ = A, x(w)erf <(_r:‘%sr_ﬂff>
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2
+»Aﬁxp—w)mf(“"'l)sm 6) (50)

4;;@,
(0<0 <8y, c=Ap.

Now, investigate the limiting behaviour of the
solution (50) at 8, — 0. Taking into consideration the

property

lim w(t,6,0,) = + o

800
and proceeding to the respective limit in (50), we obtain
that concentration distribution in this case is con-
tinuous and is described only by the first term of
equation (50) [which corresponds to A, = 0 in (50)].
This means thatat 8, = 0 (which is consistent with the
absence of a varnished inclusion on the sphere surface),
the concentration distribution in the flow is fully
determined by the initial condition (3) alone, i.e. one
cannot impose at a time the initial condition at t = 0
and the boundary condition at 8 = 0.

The above example is an apt illustration of the
results of Section 4; at 6, # 0 the problem (1-3), (46)
and (47) corresponds to Case (a), while at 6, = 0, to
Case (b).

In a similar fashion one can show that the function

w (r — 1)sing
=h| —th—* Jerf
¢ 1< th 5 >er ( ey >

[where 1, is determined in (49)] is the solution to (1),
(2) and (47) at U(t) = 1 corresponding to a non-
uniform initial distribution of concentration in the
fluid flow t = 0, ¢ = h(cos 8) and to the condition of
complete substance absorption on the sphere surface.
This expression generalizes the results of [1, 2, 6]
where the case h = const. was considered.

When a sphere moves with a variable velocity U(t),
the variables (4) are determined from equations (44),
(45) and (13), (14). The respective solutions of non-
linear problems (1-3), (27), (33), (37), (46) and (47) are
specified by equations (23), (30), (31), (34), (36), (38)
and (48).

It should be noted that equations (46) and {48) can
be used as a basis for approximate integration of
equations (1-3) and (47) in case of an arbitrary
function of sphere motion, U(t). For this purpose, by
differentiating (46) with respect to t, determine the
parameter y in terms of the function U(¢)

y = dU " }e)/dt. (51)

It is the substitution of the expression y = y(U(t)) into
(48) that yields approximate relationships for the
variables (4). In the particular case of the steady state
motion of a sphere or motion following (46), equations
(48) and (51) are exact.

The integral diffusional flux I° (at 8, = 0), cor-
responding to the stationaryflow field U = lato = 1,
in the case of sudden reaction occurrence is calculated
in [1, 2, 7]. This allows determination of the integral
flux I from equations (24), (32), (36) and (43) in non-
linear problems corresponding to (27) and (33).
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For a droplet in a steady state shear Stokesian flow
(Case b), the functions occurring in (1) and (2) have the
form

E=r—1, =0, g=-sin?h, Q= 3sin?*dcosd.

(52)

Here the characteristic velocity scale is taken to be U,
= g, (u; + p,)” ", ais the shear factor.

By virtue of [8] and the results of Section 7 the
integral diffusional flux, in case the diffusion coefficient
is an arbitrary function of concentration and there is a
sudden occurrence of reaction on the droplet surface, is
determined from

n
I=11=¥gﬂu3ﬂuw,12=4BnPeahuny“.w”

Equations (32), (36) and (53) determine the integral
flux to the droplet surface for linear and hyperbolic
dependence of the diffusion coefficient upon con-
centration (27) and (33).
9. UNSTEADY STATE DIFFUSION TO THE FILM SURFACE.

PERIODIC REGIMES

Consider a convective diffusion to the surface of a
film falling down a wall in the periodic regime. It is
often the case that the hydrodynamic model of film
motion leads to the following expression for the
velocity components in equations (1) and (2) [3, 4, 6,
26]:

Q=Qy), y=n-v,

Here Q(y) = Q(y + T,)isacertain (arbitrary) periodic
function y with the interval Ty, the specific form of
which is determined from solution of the respective
hydrodynamic problem.

In a general case the variables (4) corresponding to
(54)can be obtained from equations (11), (13)and (14).
Then, distribution of concentration for the developed
periodic regimes with a steady supply of reagent at the
point of entry into the reactor, which corresponds to
the boundary conditions =0, c=y,=b; & =0,
c=¢@=a(a, b=const.) is determined, for equations
(1), (2) and (54), by the equality ¢ = ¢, where the
function ¢, is defined in (23), (25), while the variables f
and t,are specified by equations (11), (14). In the linear
case,¢ = I, such problems were considered in [3,4, 6].

Let us obtain some other exact time-periodic sol-
utions of the problem (1), (2), (54). In terms of the new
variables n and y the differential operator L (5), (54),
which determines the form of the variables (4) and (8),
acquires the form

g=1(v>0). (54

o .0
L=(Q-v)~ +0—

Q =Q).
oy on «@, »

(55)

Therefore, it is convenient to choose the variables
(4), (8) in this case in the form

SO =Q)—v,
w=r1—y—vjf“dy, TO(Y)=J)de- (56)
(1] o
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When writing equations (56) it was assumed that
Q—v>0;1,isa particular solution of the last equation
in (8), (55). In order that the final form of the variable
be chosen, let us avail ourselves of the remark made at
the beginning of Section 8, i.e. that the general solution
of equations (8) and (S5) for T has the form

7= fyfdy+Z<n—y—v .rf_‘dy>. (57)
0 0

Here Z = Z(w) is an arbitrary function the specific
form of which is determined from the condition of
periodicity of the variable (57) in y (or, equivalently, in
t). It follows from the condition z(y, n) = ©(y + Ty, 1)
that the function Z will generate the equation

Zw)=Z[o - Tl +v<f1>)]+ Ty <f>,
1 (To
<h> = —J hdy. (58)
TO o
The solution of equation (58) is sought in the form
(59)

Substitution of (59) into (58) leads to the following
value of the coefficient p

Z(w) = pw + q (p,q = const.).

p=<f>1+v<fl>)L (60)

As would be expected, the coefficient ¢ in this case is
an arbitrary additive constant.

With regards to (57-60) we obtain for the variable t

r=rfdy+m<~<ff>_—l><n—y—v'[:f"dy>+q
N v<f> Yo

~Lfd}’+m<t—ﬁf 1dy>+q,
(61)

Now, selecting the parameter g so that the inequality
7 > 0is valid, we obtain, for any function €, the one-
parametric set of solutions of equations (1), (2) and
(54), which satisfies the boundary conditions = 0, ¢
=a;¢ = w,c = b, in the form

_ v &
¢ = Y(m,d,b).

The variables fand 7 in the above equation have been
defined by equations (56) and (62), while the function
Y(x, a, b) is the solution of the problem (25).

By virtue of (24), (25), (56) and (61), the local
diffusional flux to the film surface, corresponding to
the solution (62), at ¢ = O(1) and n— oo has the form

y=n—vt

(62)

1
N w, j= EPe”2 J(o,a,b)

l+v<fl>
o —=7 =
<f>
This expression shows that at n — oo the local

diffusional flux decreases inversely proportional to the
square root of the distance from the entrance to the

172
) fn~12 (63)
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reactor, with the proportionality factor depending
upon the mean values of fand /™! in the oscillation
period.

Equation (63) gives the expression for the mean local
diffusional flux:

1
N—- o, <j>= iPe"’ZJ(a,a,b)

x[<f>0+v<f P>y (64)

It can be shown that at # — o these very equations,
(63) and (64), define the principal term of the asymp-
tote to the quantities j and <j> obtained for the
developed periodic mode of diffusion with a steady
state supply of reacting substance at the boundary
conditions £=0, c=a; n=0, c=b. The case of the
linear problem, ¢ = 1,correspondstoJ = 2n~ 2 (b —
a) in equations (63) and (64).

AtQ — v < 0, thevariable fis chosen in the form f =
v — Q, while the variables w and 7 are obtained from
equations (56) and (61) by substituting —f for f.

10. UNSTEADY STATE DIFFUSION IN THE CASE OF
ARBITRARY KINETICS OF SURFACE REACTION

Now consider the process of unsteady state con-
vective diffusion to a droplet (bubble, liquid film) with
the surface chemical reaction occurring on its surface
with the final rate k'F  (c,), where k' is the reaction rate
constant, F_ is the “reaction law”.

A corresponding boundary value problem is de-
scribed by the linear equation for concentration in the
bulk of the liquid A(c, 1) = 0 and by initial and
boundary (at# = 0)conditions (3) and (41). Moreover,
that the formulation of the problem be completed, it is
necessary to add an equation for the surface con-
centration distribution

oc. 1 dc dc
=0, —2+-—Q= =—kF D — (65
¢ a7 «le) + aé( )
(=0, c=Tc, (66)

In writing equation (65) the term DA c,, which
describes molecular surface diffusion, was ignored and
it was assumed that there is phase equilibrium between
the bulk and surface concentration (66); I' is the Henry
constant. For convenience, all the equations and initial
and boundary conditions are presented in dimensional
form which formally is equivalent to the replacement
e=,/D at o=1 in equations (1) and (2) and the
variable { (4).

Turning to the variables (4), (11), (13) and (14), with
regard for (65)and (66) and 8/6t = f~°L, we obtain the
following problem for concentration distribution

de _ d%c

E-—@-{;;‘L':O, c=A

(67)

9 y
{=0, f2£=—F(c)+l“\/Df£;

F(c) = KT F (T '¢).
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Here the subscripts « and g, corresponding to adjacent
regions located on each side of the curve w = 0in the
plane #, t (Fig. 2), on the variable r and the parameter A
are omitted.

The solution of the problem (67) is sought in the
form

D(w, 1)

v 1 !
C(Cl),g,‘[)— A —% J‘O me

(68)

Here c is the solution of equation (67) and it satisfies
the initial condition at © = 0 for any limited kernel @;
then the following limiting relations [27] hold:

1 2)dA
lime=C=A4— J—(-LO—L
0 \/n 0\/1—/

dc

lim — = ®(w, 7).

(69)
:~0 &

Substituting equation (68) into the last boundary
condition in (67) and taking into account the proper-
ties (69), we obtain a system of equations to determine
the limiting concentration C = c(w, 0, 7) = ¢(t, 0, 1)
and the kernel @

’ (I>dﬂ

Solving the first equation of this system for ® and
substituting the respective expression into the second
equation, we obtain the integro-differential equation
for the function C:

C=A4 L f[[F(CHﬁEL d
~ 7 rJ@D) ), 04 f(w, )/t — A)
(70)

For a steady state flow the following equalities hold
and f? /0, = 0/0t + f2 8/ét,,

which makes it possible in Case (b) [which cor-
responds to 7 = 7, in (70)], on having replaced x = 4

+ 15[ T(w)] in the integrand, to write equation (70) in
the form

75 = 14(n)

1
IR W)

[/ eran[re Enl )= —

74 @ [( )+ ot * ox f*(x)\/(r,,—x)’

f*(fﬂ) Ef["l(fg)]a (71)

Now, let us analyze one particular case of flow when
equation (71) is integrated explicitly. To this end,
consider a plane steady state flow of an ideal incom-
pressible fluid in the region & > 0, # > O which is
determined by the stream function

¥ =&y,

Tp = T4(1).

g=1(Q=2¥8n, &=const). (72)

The new variables (4), (11), (13) and (14), entering

L’Z
xP {— 4 — ;.)}d’

" theintegral (71), the solution of equations (71)and (73)
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into equation (71) and corresponding to the non-linear
non-stationary problem (1), (2), (65), (66) and (72) have
the form
w=—t+6'Inn, f=d 1,=20172,
T( 6(; f* (26x)1,"2 (73)

By passing to a new integration variable z = xt; Lin

is sought in the form C = C(t). With regard for the
equality t4n) 7;' (T(w)) = e % this yields the
following ordinary differential equation for the limit-
ing concentration :

1

T I /(2n8D)

X l:n ~ Be™ -

C=

1 1\ |/dC
5 2>}<T + F(C)) (74)

Equation (74) is easily integrated explicitly in the
case of the Ist-order surface reaction F(C) = kC; here,
just as in the general case, the following natural
condition C(0) = A should be chosen as an initial
condition for the surface concentration.

It should be noted that even though equation (74)
for the limiting concentration has been obtained in the
diffusion boundary layer approximation (1) and (2),
yet it is an exact solution of the complete convective
diffusion equation

dc/ét + (W) = DAc; v, = —3¥/on,

v, = W/ (75)

This can be verified directly by substituting the
expression for the stream function (72) into (75) with
regard for the fact that the solution of the problem (72),
(75) is independent of the transverse coordinate 7, i.c.
c = cft, &).

Equation (74) also describes the dependence of the
limiting surface concentration upon time at the for-
ward stagnation point of a spherical droplet§ = Oina
steady state translational Stokesian flow ; in this case
the parameter J in equation (74) should be set equal to
6 = Uy mi[2ac(uy + 1)1

For a stationary nonlinear boundary condition on
the droplet surface the solution of the problem

Ale,1)=0;&=0, dc/of = Ryc)

subject to the initial and boundary (at n = 0)
conditions (3) and (41) is reduced to the solution of the
following integral equation for the limiting concen-
tration [11]

C)di
C=A- T[fwr:;r—/

It should be noted that equation (68) at ® = & ~'H
gives the solution of the linear boundary value problem
Al(c, 1) = 0 with the initial and boundary (at n = 0)
conditions (3), (41) for the case vhen the local flow on
the reacting surface is prescribed in the form
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¢=0, 0c/o¢ = Hit,n),

where H is the known function.

11. STATIONARY CASE. CERTAIN CORRELATIONS

For the stationary problems (1) and (2) [8/t = O,
Q = Q(n), g = g(n)] subject to the boundary con-
ditions

n=0,

¢c=A; ¢=0, ¢=B (A, B=const)

(76)
it follows from the results of Section 7 that the integral
diffusional flux to the droplet surface is determined by

4 n* 1/2
1= ﬁJ(B,A)IO, 1°= 7<n j J9Q dn>
2 £ 0
7

Here I° is the integral diffusional flux corresponding
to the linear (¢ = 1) stationary problem (1) and (2)
subject to the boundary conditions (76)at 4 = 1, B =
0; the formula for I° is presented for an axisymmetric
case. In Case (b) the first boundary condition (76)
should be replaced by the condition at infinity £ — oo,
c— A

In the case of an arbitrary dependence of the
diffusion coefficient on concentration, equations (77)
can correlate the results of the works [ 14, 28] obtained
for a chain of droplets (bubbles). In particular, for a
chain of droplets of equal radius located at a (non-
dimensional) distance ! from each other on the axis of
the translational Stokesian flow (Fig. 7), provided that

0() <1 <0E™Y), o0, <olc) <0,;

0<o0,<0,<w,

the following formulae are valid for the integral
diffusional fluxes at the droplet surfaces

L,=1[m"?*—(m—-1)"7?}(m=12,..) (78)

Here m is the ordinal number of a drop; the
numbering starts as shown in Fig. 7.

For a stationary problem similar results can also be
obtained for a chain of solid spheres in a Stokesian
flow. The stream function in the vicinity of surfaces will
be quadratic in ¢ and will have the form ¥ = £2Q. By
using the same sort of reasoning as in [29, 30], we
obtain the following formulae for the integral
diffusional fluxes:

I, =1,[m*? — (m— 1P [0(1) < | < O(Pe*P)].
(79)

Equations (78)and (79) show that in the general case
of an arbitrary dependence of diffusion coefficient
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upon concentration the ratio, I,/I,, of the integral
diffusional fluxes to droplets or solid particles of the
chain does not depend on the diffusion coefficient o(c).
Here, just as in the linear case, the integral mass
transfer in the chain is strongly retarded by interacting
diffusional wakes and boundary layers of particles in
the chain.

It should be emphasized in conclusion that the
procedure of introduction of new variables (4) and (8)
can be applied to analyze similar, but more complex,
boundary value problems (and the systems of equa-
tions), to those presented by equations (1) and (2).
Thus, it can be used for the study of a number of
processes of simultaneous heat and mass transfer.
Moreover, in the case of a compressible fluid one can
use a more general (than (4) and (8)) method of
introduction of new independent variables which
makes it possible to analyze the corresponding prob-
lems of the unsteady state boundary layer. Namely, if
the fluid velocity components at the particle surface
{¢—0) can be approximated as

ve=EV(tn), v,=Qtn) (80)

then, to simplify equations (1) and (80) (it is supposed
here for simplicity that the metric coefficients have
been chosen conventionally g, = g,, = 1), one should
introduce the new variables (4} and require that the
functions w, f, T would satisfy the equations

L*o =0, L*=—Vf
L*t = f2; L* = 8/0t + Q&/oy.  (81)

It is seen that the systems (8) and (81) are quite
similar in structure. The function f = f{t, ) should
therefore be determined from

v
= dﬂ}, (82)
J:?. <Q >(w) -

while the variables w and 7 are prescribed by equations
(10),(11),(13),(14)and (82)atg = 1. Equations (1 )and
(80), on employing substitutions (4) and (81), are
reduced to equation (9).

f-ew -
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RESOLUTION DE QUELQUES PROBLEMES NON-LINEAIRES DE COUCHE LIMITE
(THERMIQUE) INSTATIONNAIRE ET CONTROLEE PAR LA DIFFUSION

Résumé—On suggere une methode analytique exacte pour la résolution d’une large classe de problémes de
couche limite instationnaire qui décrivent les mécanismes de transfert convectif de chaleur et de masse des
particules dans un fluide incompressible et visqueux avec des gouttelettes (bulles). La méthode se révéle aussi
adaptée pour les mécanismes de transfert au voisinage de I'interface liquide-fluide (comme pour les films
liquides). La méthode est basée sur I'introduction de quatre nouvelles variables indépendantes spécifiées par
un systéme d’équations aux dérivées partielles du premier orde qui admet une solution générale du probléme
linéaire avec des conditions initiales et aux limites arbitraires. De plus, il est possible d’obtenir une large classe
de solutions de probiémes non-linéaires dans le cas ou le coefficient de diffusion (diffusivité thermique) est une

fonction de la concentration (température).

Une solution générale est obtenue pour un probléme linéaire, similaire et instationnaire connecté a une
réaction chimique du premier ordre dans le fluide. On étudie la diffusion 4 la particule pour une vitesse

arbitraire de réaction sur sa surface.

On montre que la solution de I'équation de couche limite instationnaire peut avoir une forte
discontinuité qui se déplace a une vitesse terminale.



Solution of some non-linear boundary value problems

EIN VERFAHREN FUR DIE LOSUNG VON NICHTLINEAREN RANDWERTPROBLEMEN
EINER NICHTSTATIONAREN DIFFUSIONSBESTIMMTEN (THERMISCHEN)
GRENZSCHICHT

Zusammenfassung—FEin exaktes analytisches Verfahren zur Losung einer weiten Klasse von instationaren
Grenzschichtproblemen wird vorgeschlagen, welche die Vorginge des konvektiven Stoff- und Warmeiiber-
gangs von Teilchen in einer idealen Fliissigkeit und Tropfen (Blasen) in einer viskosen inkompressiblen
Fliissigkeit beschreiben. Das Verfahren ist auch auf die Berechnung von Ubertragungsvorgingen
anwendbar, die in der Umgebung einer Gas-FHlissigkeitsgrenze (d.h. in Flissigkeitsfilmen) auftreten. Die
Methode basie:! auf der Verwendung von vier neuen unabhingigen Variablen, die durch ein System
partieller Differentialgleichungen erster Ordnung bestimmt sind, wodurch eine allgemeine Losung des
linearen Problems bei beliebigen Anfangs- und Randbedingungen erméglicht wird. Zusitzlich bietet sie die
Moglichkeit, eine weite Klasse nichttrivialer (und nicht dhnlicher) Losungen von entsprechenden nichtlinea-
ren Randwertproblemen fiir den Fall zu erhalten, daB der Diffusionskoeffizient (die Temperaturleitfahigkeit)
eine Funktion der Konzentration (Temperatur) ist.

Eine allgemeine Ldsung erhilt man fiir ein dhnliches lineares instationires Problem, das mit einer
chemischen Reaktion erster Ordnung im Fluid verbunden ist. Dabei wird der Vorgang der konvektiven
Diffusion an einem Teilchen bei beliebiger chemischer Reaktionsgeschwindigkeit an dessen Oberfliche
untersucht. Es wird gezeigt, daB die Losung der instationdren Grenzschtgleichung eine starke Unstetigkeit

aufweisen kann, die sich bei der Endgeschwindigkeit verlagert.

METO/[ PEIIEHHUSI HEKOTOPbIX HEJIMHEMHBIX KPAEBBIX 3AJIAY
HECTALTMOHAPHOI'O JU®P®Y3UOHHOI'O (TENJOBOI0) NOrPAHUYHOI'O CJI0s

Anvorauus — B pabote npemnaraeTcs TOYHbIH aHANMTHYECKHI METOI pPEUIEHHS LWHMPOKOro KJjacca
HECTAUMOHAPHBLIX MOrPAaHCHOAHBIX 3a1a4, ONHCHIBAIOLIMX NMPOLECCH] KOHBEKTHBHONO MACCO- M TEMJIO-
oOMeHa YacTHIl B WIeaNbHOM M kaneib (ny3bipeil) B BA3KOM HeCKMMaeMoll XHMAKOCTH. YkazauHast
npoueaypa NpyroiHa Takxke JUis aHa/H3a POLECCOB NEPEHOCA, MPOHCXOAALIMX B OKPECTHOCTH MOBEPX-
HOCTH pa3fie/ THNA XHUAKOCTb—XKUAKOCTD (ra3) (HanpuMmep, B IJIEHKAX XHAKOCTH). MeTold OCHOBaH Ha
BBEJICHHH HOBBIX YETHIPEX HE3aBHCHMBbIX NIEPEMEHHBIX, YAOBJIECTBOPSIOLIMX CHCTEME YPABHEHHH B yacT-
HbIX IIPON3BOJHBIX IEPBOTO NOPAAKA, M NO3BOJIAET NOJYYHTh obllee PellleHHe THHEHHOM 3a1a4H B CllydYae
MPOU3BOILHLIX HaYaJbHbIX M IPaHHYHBIX ycJI0BHH. KpoMe Toro OH Jaer BO3MOXHOCTb MOJYYHTh
WIAPOKHIA KJIACC HETPHBHANLHBIX (M HEABTOMOJC/AbHBIX) PELLEHHH COOTBETCTBYIOILMX HETHHEHHBIX
KpaeBbIX 3aja4 B ciyuae, koraa xoddpduuuenT anddy3HH (TeMNepaTyponpOBOIHOCTH) 3aBHCHT OT
KOHUEHTpaluH (TeMnepaTyphl).

IMonyueno obwiee peuieHue aHANOTHYHOW NUHEHHOM HECTALMOHAPHOM 3ajaYH NPH NPOTEKAHHM
B XHIKOCTH 00beMHON XMMHYECKOH peakuyH nepsoro nopsaxa. Mccneayercs npolecc KOHBEKTHBHOM
AudQy3uA K IOBEPXHOCTH HACTHLLI TPH NPOU3IBONILHOM KMHETHKE MOBEPXHOCTHON XHMHYECKOH peakinH.

[Moka3ano, 4TO pELIEHHE HECTAUHOHAPHOTO YPaBHEHHUS MOTPAHHYHOTO CJI0S MOXET MMETh CHIbHBI
pa3pbiB, KOTOPbIH NEPEeMELIAETCH ¢ KOHEHHOH CKOPOCTBIO. YKa3aHo 0600LIEHHE METOa AN aHAIOIHY-
HBIX 33/1a4 HECTALMOHAPHOTO Macco- H TEMIOOOMEHa B CKMMaeMON XHAKOCTH, 4 TAKXE MPH HATHYHH
BAYBa WJIH OTCOCA XHAKOCTH HAa pearupyolleil moBepxHOCTH.

[lpennoxeHHbIR METOA UCIIONL3YETCA AT PELLICHHS PAJA KOHKPETHBIX 3a7a4. ToapobHo uccreay-
ercd ciy4ail TMHeHHol M THNep6OoIHYECKON 3aBUCHMOCTH KO3hGHUHEHTa NUdDY3HH OT KOHUEHTpAIHH.
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