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Abstract-An exact analytical method is suggested for the solution ofa wideclass ofunsteady state boundary 
layer problems which describe the processes of convective mass and heat transfer of particles in an ideal, and 
droplets (bubbles) in a viscous incompressible, fluid. The procedure proves also adequate in analyzing 
transfer processes occurring in the neighbourhood of a liquid-fluid type interface (e.g. in liquid films). The 
method is based on incorporation of four new independent variables specified by a set of lst-order partial 
differential equations which allows a general solution of the linear problem subject to arbitrary initial and 
boundary conditions. In addition, it affords the possibility of obtaining a wide class of non-trivial (and non- 
self-similar) solutions of respective non-linear boundary value problems in the case when the diffusion 
coefficient (thermal diffusivity) is a function of concentration (temperature). 

A general solution is obtained for a similar linear unsteady state problem connected with the lst-order 
bulk chemical reaction occurring in the fluid. The process of convective diffusion to a particle at an arbitrary 
rate of chemical reaction proceeding on its surface is studied. 

It is shown that solution to the unsteady state boundary layer equation can have a strong discontinuity 
which displaces at terminal speed. 

Extension of the method to analogous problems of unsteady state mass and beat transfer in a compressible 
fluid is indicated. 

The method suggested is used for the solution of a number of specific problems. The case of linear and 
hyperbolic dependence of the diffusion coefficient upon concentration is studied in detail. 
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NOMENCLATURE 

constants occurring in (41); 
differential operator defined in (9); 
= Y(O), constant occurring in (25); 

characteristic particle dimension ; 
constant occurring in (41); 
incomplete beta-function ; 
= Y(Z), constant occurring in (2.5); 
limited concentration ; 
dimensional reagent concentration in 

liquid flow ; 
non-dimensional reagent concentration 
in liquid flow; 

surface concentration ; 
characteristic concentration ; 
= Do(c), diffusion coefficient ; 
surface diffusion coefficient ; 
function defined in (36); 
direction vectors of the curvilinear co- 
ordinate system ; 
dimensional surface reaction rate ; 
function occurring in (4); 
= gcr gn,,gli, first invariant of metric 
tensor; 

Ye;? g,,,p gii. metric tensor components; 

I, I,, I,, non-dimensional total diffusional flux ; 
I’, It, I$ non-dimensional total diffusional flux 

corresponding to a linear problem at 
o= 1; 

I mr 

J, 

k, k’, 

L, 
1, 

m, 
n, 
p, 
Pe, 
4, 

R, 
4, 
r, 
X 
Sh, 
T 
t, 
uo, 
u, 
uw 
V, 

non-dimensional total diffusional flux to 
the mth droplet (particle) of a chain ; 
function defining local diffusional flux 

(24); 
non-dimensional local diffusional flux; 
non-dimensional local diffusional flux 
corresponding to the linear problem at 
fJ= 1; 

non-dimensional and dimensional reac- 
tion rate constant, respectively ; 
differential operator defined in (5); 
non-dimensional distance between drop- 
lets (particles); 
ordinal number of a droplet (particle); 
exponent; 

= P(Q), function defined in (35); 
= a,U,D-‘, Peclet number; 
source ; 

function defined in (32); 
surface reaction rate; 
radial coordinate ; 
particle surface area ; 
mean Sherwood number; 
function defined in (3); 
non-dimensional time; 
flow velocity at infinity; 
= U(t), function defined in (46); 
characteristic velocity of a particle; 
fluid velocity; 
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I’;, L’,,’ fluid velocity components ; 
V, function occurring in (80) ; 

X. variable occurring in (25) ; 

Y, = Y(x), solution of the problem (25); 
Z, Z,, Z,, arbitrary functions depending upon the 

variable w alone; 

G = z(p). solution of the auxiliary problem 

(31); 

H, integral operator defined in (39); 

h, = k(cos O), initial concentration distri- 
bution outside of the sphere. 

Greek symbols 

a, shear factor ; 
r, Henry constant ; 
7, coefficient occurring in (46); 

A, Laplace operator; 

6, coefficient occurring in (72); 
C, = PC”‘, small parameter; 

4, new variable (4); 

V? second (longitudinal) curvilinear 
coordinate ; 

0, polar angle ; 
K, parameter occurring in (27) and (33); 

A, differential operator defined in (1); 

1.3 third curvilinear coordinate ; 

P3 variable defined in (30); 

111, dynamic viscosity of fluid outside of a 
droplet ; 

p23 dynamic viscosity of fluid inside of a 
droplet ; 

5, first (transverse) curvilinear coordinate ; 
0, = dC)> non-dimensional diffusion 

coefficient ; 
t, TV, t,, TV, new variable (4); 

@, kernel of integral operator(68); 

cp? function defining the boundary condition 
at the droplet surface (3); 

X> = x(w), Heaviside unit function ; 

yy, stream function analogue ; stream 
function; 

i,> *p, functions defining initial and boundary 
(at r) = 0) conditions (3); 

Q function defining the principal term in the 
stream function expansion near the par- 
ticle surface; 

w, new (cyclic) variable (4). 

1. INTRODUCTION 

LINEAR problems of the unsteady state diffusion- 
controlled (thermal) boundary layer were the concern 
of a number of earlier publications (see for example 
[l-lo]). Thus, the authors of [l], by applying the 
Laplace transformation with respect to time, have 
determined the diffusional flux to the surface of a 
droplet in a steady translational Stokesian flow with a 
sudden occurrence of chemical reaction. In [2-61, the 
analysis of a number of unsteady state boundary layer 
problems was based on the use of a self-similar variable 

allowing the initial convective diffusion equation to be 
reduced to the lst-order partial differential equation 
for the diffusion boundary layer thickness and to 
ordinary differential equation for concentration. In 
[5-91, two new variables have been introduced (which 
simplify the initial problem) the determination of 
which have also required the solution of the lst-order 

partial differential equation. 
Introduction of new variables has made it possible 

to study a number of unsteady state problems de- 
scribed by the convective diffusion equation with time 

dependent coefficients [3-6, 8, 93 for the solution of 
which the method suggested in [1] is inapplicable. 
Similar problems have been analyzed in [lo] by 
applying the Fourier sine transformation with respect 

to the transverse coordinate. In [ll, 121, some non- 
linear unsteady state problems were analyzed by 

invoking three (four) new independent variables. Lin- 
ear problems involving the lst-order bulk chemical 
reaction were considered in [13]. 

The present paper suggests a general method for the 
solution of this type of problems which enables one to 
study the respective equations in a single form. 

2.CHOlCEOFCOORDINATESYSTEM.STATEMENTOFTHE 

PROBLEM 

Assuming that the fluid flow field has been found 
from the solution of the respective problem on hydro- 
dynamic flow, introduce a local orthogonal system 

of coordinates 5, VI and i. associated with the body 
(droplet) surface and flow geometry in the fashion 

similar to that described in [ 141. To do this, determine 
the direction of the unit vectors et, e,, e;., at any point M 

located near the particle (Fig. 1). The point M’, nearest 
to M on the body surface, specifies the direction of et, 
while the segment 1 MM’1 determines the non- 

dimensional coordinate < = <(lMM’I), where the 
length scale is the characteristic body dimension (e.g. 
sphere radius). Without the limitation of generality, 
the coordinate 5 is chosen so that 5 = 0 corresponds to 
the body surface and (gCJr _0 = 1. The direction of e, is 
determined by the fluid velocity vector projection at 
the point M onto a plane normal to et, while e, is 
selected so that the system ofvectors e:, e,,, e, forms an 
orthogonal right-handed triad (Fig. 1). 

In this coordinate system, the fluid velocity vector at 
any point of a 3-dim. flow has in general the form v = 
{uC, u,,, 0). Note that here, as distinguished from the 
stationary flow field, the directions of the unit vectors 
eg. e,, e, and the metric tensor components gCs CJ,,~, gij 
are time-dependent (reckoning of the curvilinear coor- 
dinates q, and i is of little importance for what 
follows and can be done in the same way as in [ 143 ; 
O<i127r). 

Let the stagnation point on the body surface, at 
which a special streamline approaches the surface and 
in the neighbourhood of which the normal fluid 
velocity component is directed toward (from) the 
surface, be referred to as the incidence (run-off) point 
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FIG. 1. Curvilinear orthogonal system of coordinates t, q, 2 
associated with the body surface and stream lines. 

and the streamline originating from it, as the incidence 
(run-off? trajectory. 

For an incompressible fluid, stream function ana- 
logue Y can be introduced, Y(t, 0, r], A) = 0, so that the 
fluid velocity components can be expressed [ 141 as 

11~ = 0; G = g;:g,,dAi. 

In the plane and axisymmetric case, Y coincides 
with the ordinary stream function. In the case of a 
steady state flow, the surfaces Y = const. have a simple 
physical meaning specific of the translational flow. The 
incidence trajectory at a distance from the particle is a 
straight line then. The isolated fluid elements equally 
spaced from this straight line at a distance from the 
particle can give a clear picture of the Y = const. 
surface if followed in a fluid flow past the particle. 

In the system of coordinates 5, q, i, the non- 
dimensional convective diffusion (heat conduction) 
equation in the boundary layer approximation is 
written as 

A(c, a(c)) = 2 + (vV)c - ,2go(c)$ = 0, (1) 

1 dY ac i3Y ac 
Y=@,(vV)c= 

7-c 
- --- - , 

9 x drl h x 1 

g = [G]<=o, I: -2=Pe=a,U,D-L 

(O<JgR-‘<x,O<t, 5<z, o<q<q ).(2) 

Here c* = cOc is the concentration, c0 characteristic 
concentration (e.g. concentration on the particle sur- 
face), Pe the Peclet number, a, and U, the characteris- 
tic dimension and velocity of particle, D, = Da(c) the 

diffusion coefficient,g = g(t, q, A) and R = O(t, q, I) the 
familiar functions of time t and coordinates 1, /I 
determined by the body shape and local field of 
velocities near its surface; r] = 0 corresponds to the 
point in the neighbourhood of which the boundary 
layer is formed (for q = 0 there is the point N in Fig. 1). 

The approximation (2) for the stream function 
analogue Y (linearity in 5) is frequently used, and is 

valid for the boundary layer, in the problems on mass 
transfer of drops and bubbles (liquid films) in viscous 
flow of the majority of water-type liquids, and in 
thermal problems (potential flow), for media such as 
liquid metals [l-14]. The coordinate /. appears in 
equations (l), (2) only parametrically and is omitted in 
what follows. 

Consider equation (l), (2) subject to the following 
initial and boundary conditions 

t=o, c=$,(5,q); 

‘I = 0, c = $p(& 5); 5 = 0, c = cp(t, a) (3) 

and the condition of solution boundedness at 5 -+ z ; 
here $,, tia, cp are some specified restricted and 
continuous functions. 

It should be noted that in case the problems do not 
involve a characteristic length (see e.g. an extract sol- 
ution in Section lo), it is more convenient to use a 
dimensional equation which can be formally derived 
from equation (1) at c = 1 employing the replacement 
of 0 by D,, with corresponding dimensional quantities 
being taken for coordinates, time and stream function. 
No proviso is further made concerning this fact, and it 
is assumed that this operation can be performed in 

final results where required. 

3. DESCRIPTION OF THE METHOD. EQUATIONS FOR NEW 
VARIABLES 

In order to solve the problem (l-3), introduce 
(similar to [ll, 121) new variables 

w = o(t, V), i = E-l 5f(t, r/+), 7 = r(t, q). (4) 

The initial equation (I), (2) will then take the form 

Self-similar solutions of equation (1) can be ob- 
tained from (5) by assuming c = c(i) and requiring the 
equality (which is an equation for determining the 
variable <) : 

f_‘(Lf- g-‘QQ’J) =f2. (6) 

The distribution of concentration will then obey the 
ordinary differential equation 

ici = (a(c)c:)t. (7) 

It should be noted that in [2-4] the analysis of a 
number of linear problems (a = 1) was actually 
performed by the method based on equations (6) and 
(7). In [7-91, a two-parametric solution ofthe type c = 
c([, 7) was sought for linear problems. 

Of course, the self-similar solutions of the type (6), 
(7) or the results obtained in [7-91 do not exhaust all 
possible solutions of equation (1). 

In the general case, to analyze equation (l), (2), we 
shall use all three new variables (4) and impose the 
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requirement that the functions W, f and T should 
generate the foliowing system of partial differential 
equations [ll, 121: 

Lw = 0, Lf= g-‘.2n:Ff; Lz ‘f2 

the general solution of which is 

(8) 

Here and subsequently the notation SCm, dq for Steu) 
dtf in the integrand means that the function S(t, q) is 
written by the expression for w = ~(t, q) in terms of the 
variables w and 9 (or (ti and t) and, in performing the 
integration, w is taken to be a parameter; o is any non- 
trivia1 solution of equation (8). 2, and Z, are arbitrary 
functions depending upon w alone. 

After employing substitution (4) and (8), equations 
(1) and (2) take the form: 

A(7,&+$7(c,$=0, c=c(w,i,7).(9) 

Equation (9) is much simpler than the initial one,(l), 
(2), and does not involve the variable o which is quite 
analogous to the cyclic variables in analytical me- 
chanics. The appropriate initial and boundary con- 
ditions (3) should be written in terms of the variables 
(4) and (8), which reduces the initial boundary value 
problem (l-3) to an ordinary heat conduction equa- 
tion depending on the parameter co. 

The transformation (4), (8), (t, {, q) -+ (0, <, 2) (if it is 
non-degenerate) iscomplete in the sense that no loss of 
any solutions to the initial equations (1) and (2) occurs 
when passing to equation (9). 

4. CHOICE OF VARIABLES INITIAL AND BOUNDARY 
CONDITIONS 

In choosing the specific form of the variables (4) and 
(8), it is necessary to distinguish between the two cases : 

(a) Ii_; (sJ#- ‘) = 0, 

(b) Iim &/gQ- ‘) > 0, 
‘1’0 

in which the integral curves of characteristic equation 

lb = &2 - i, iw 

corresponding to the operator L, show a substantially 
dissimilar behaviour. in the first case it is a non-trivial 
integrai curve of equation (10) which passes through 
the coordinate origin in the plane yf, t (Fig. 2), while in 
the second case such an integral curve does not exist 
(Fig. 3). 

The Case (b) usually holds for the problems when y 
= 0 corresponds to the stagnation point on the body 
surface (point N in Fig. I). 

Case (a). The first two variables (4), (8) throughout 
the flow region are selected in the form 

Here r(v) is the solution of the characteristic equation 
(IO) restricted by the property t(0) = 0; rf.+ E [O, q’) is 
anything. 

In choosing the variabie 5, (4) and (5) it should be 
noted that in the region LLI < 0 the integral curves of the 
characteristic equation (IO) intersect only the axis I 
and therefore the solution in this region depends only 
upon the boundary condition (3) at q = 0 and does not 
depend upon the initial condition at r = 0; in the 
region w > 0 &he integral curves intersect only the axis 
Q and here the solution depends only upon the initial 
condition (3) at t = 0 and does not depend upon the 
boundary condition at q = 0 (Fig. 2). This means that 
distribution of concentration on one side of the curve 
w = 0 is not affected by the initial, and on the other by 
the boundary, condition. 

It should be noted that equations (l), (2) have the 
particular solution I‘ = Z(w) (2 is an arbitrary 
function), which, at $, = ii/,(q), @a = $&t) and inert 
boundary conditions acj?< = 0 on the particle surface 
c =O, may conform to the initial and boundary (at 9 = 
0) conditions (3) due to the choice of the function Z 
(Z can be a djscontinuous one; thus, at t = 0, c = 1; 
4 = 0, c = - 1 we have c = sign w). Because of this 
situations may occur in the boundary layer problems 

Frc;. 2. Behaviour of integral curves of the characteristic 
equation co~espon~jng to the operator L (C&e a). 

FIG. 3. Behaviour of integral curves of the characteristic 
equation (10) in Case (b). 
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of unsteady state convective diffusion which involve 
concentration discontinuity as a consequence of the 
hyperbolic nature of the initial equation (1) with 
respect to the variables t and r7. 

With the above in mind, let us introduce two time 
dependent similar variables t, and rp (here and sub- 
sequently the quantities associated with the region o 
> 0 are indicated by the subscript a, and with the 
region w < 0, by the subscript /?), either of which is 
continuous in its own domain, satisfies the last of 
equations (8) and is determined by the boundary 
conditions 

t=o, t,=O; r/ = 0, Tp = 0. 

The solution of problems (8) and (12) is: 

(12) 

Tz = T,(t,rl) = f’(_,dt = rp - r&O, T(w)), (13) 

Expressing the former variables t, 5, v] in terms of the 
new ones o, [, 7 (4) (8), (13) and (14) in each region of 
one-signed w (the Jacobian of this transformation 
differs from zero) and substituting them into (1-3) for 

the concentration distribution yield : 

C = Xb)'d'A i, T,) + X( -&&A i, .sp) (15) 

X(W) = 
i 

0, at w < 0, 

1, at 0 > 0. 

Here x(o) is the Heaviside unit function, while the 
functions c, and cs are determined by the solutions of 
the following boundary value problems : 

A@, i)c;. = 0; 7?= 0, c,= $,(w, i); (16) 

i = o,c;, = (PJt,,w); y = LY, p; (py(7y,w)= 

It is seen that the initial problem (l-3) with the 

variable coefficients has simplified substantially to the 
equation with constant coefficients (9) which depends 
only upon two variables, < and T (and no longer on o), 
and to the boundary conditions (16), which depend 
parametrically upon the third cyclic coordinate w. 

Equation (9) occurs frequently in the theory of non- 
linear heat conduction [15, 161 and filtration [17] and 
there are already its exact analytical, approximate or 
numerical solutions (under certain initial and boun- 

dary conditions) for many functions cr = rr(c) (see 
Section 6). 

In general, the solution of the problem (l-3) be- 
comes discontinuous in passing through the character- 
istic w(t, ‘1) = 0 (11) (Fig. 2). For this reason, the 
diffusional boundary layer approximation (l-3) by 
itself proves to be unjustified close to the front q = T(r) 

moving with the velocity u = (g-r” fi),,,,=r(r) within 
the region Iw] 2 0( ) I:, 1. cc 1. Physically this implies the 

presence of large concentration gradients in the region 
and necessitates the use of complete convective 
diffusion equation in the vicinity of w = 0. The 

problem on concentration distribution in the neigh- 
bourhood of the front r) = T(t) can be formulated by 
the method of matched asymptotic series expansions 
[12, 181. 

It should be noted that even though the boundary 

layer solution is inapplicable in the region 1~ - T(t)] 

2 O(c), it provides, when used at q+ = O(l), a correct 
result for the principal term of asymptotic expansion 
(in the parameter t: cc 1) for the basic characteristic of 

the process of transport, i.e. the integral inflow of the 
reacting substance (heat) to the body surface. 

Case (b). Here all of the integral curves of the 

characteristic equation (10) intersect the axis t alone 
and keep clear of the axis r~ (Fig. 3). This implies that 
only the condition (3) at t = 0 can here be satisfied, 
while the boundary condition at r) = 0 for the arbitrary 
function tip can no longer be imposed l-just as the 
second condition for the variable ‘sp in (12)] ; here, one 
can only require compliance with the (weak) condition 
of boundedness for the solution (c( < x at rt + 0 (or in 
an axisymmetric case-the condition of axial sym- 

metry dc/&) = 0 at q = 0). In Case (b), the diffusional 
boundary layer equations (1) and (2) are uniformly 
applicable in a small parameter c (and its solutions are 
smooth) to the entire flow region. The variables w, [, r 

(4)and (8) should also be chosen in the form of (11) and 
(13) with the difference that the condition t(0) = 0 

does not hold now [there being instead the condition 
t(q.+) = 0, with r7* E (0, 7’) anything]. With the 

replacement such as this, the problem (l-3), subject to 
the condition of solution boundedness instead of the 

boundary condition at q = O(3), is reduced to (15) at y 
= CI and all what has just been said for Case (a) will 
also hold here. The solution of the respective non- 
linear problem (l-3) in this case is prescribed by the 
first term of equations (15) and (16): 

c = c,(w, i, t3). (17) 

In Case (b) it is also meaningful to consider the 

solutions to equations (1) and (2) that satisfy the 
boundary condition at infinity at t + x instead of the 
initial condition at t = O(3) [8, 91 (see the comment 
at the end of section 6). 

It should be noted that to choose the variables (4) 

instead of (11) (13) and (14) for the solution of 

particular problems it is frequently more convenient to 
directly employ equation (8). 

5. LINEAR CASE. PROBLEMS WITH VOLUMETRIC 
REACTION 

In the linear case (a = 1) the problem (l-3) is 

reduced to a respective boundary value problem for an 
ordinary linear heat conduction equation with con- 
stant coefficients (9), (16) the solution of which is well 
known. The concentration (temperature) distribution 
is then prescribed by formula (15) [or (17)] where the 
functions c, and cg are determined by : 
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x c,x,(w, 1) di.; y = a, D. 

(18) 

Equations (15) and (18) extend the results of [ l-10) 
to the arbitrary initial and boundary conditions (3). 

The problems involving the lst-order bulk reaction 
are described by 

A(c, 1) = - kc, k = k’a,U-’ (19) 

by equation (2) and initial and boundary conditions 
(3). Here k’ is the reaction rate constant. 

In this case the substitution 

c = e-k’u (20) 

reduces the initial problem (2), (3) and (19) to the 
following boundary value problem to determine the 
function u 

A(u,l)=O;t=O, rr=$2;;‘1=0, u=@; 

<=o, ll=cp*, $: = $,, $I$ =ek’tjp. ‘p* =ekr(p. 

(21) 

It is seen from comparison of equations (1) and (21) 

that in the case of the lst-order bulk reaction the 
problem (2), (3) and (19) has reduced to the solution of 
an auxiliary problem for the function u with the 

volumetric reaction absent. The function u is therefore 
described by (15) and (18) with the respective replace- 

ment of c by u and $, tia, cp by $,*, $,*, (p*, whereupon 
concentration distribution is determined by (20). 

Note, that if the right-hand side of equation (1) 
contained the source q = q(t, VI, [), then the right-hand 
side of the final equation (9), upon transformations (4) 
and (8), would have the term qf ‘. In the linear case 

(0 = 1) the solution of such a non-uniform problem for 
equation (9) is well known and therefore is dropped 
from consideration. 

6. EXACT SOLUTIONS OF SOME NONLINEAR BOUNDARY 
VALUE PROBLEMS 

A wide class of non-trivial solutions for the non- 
linear boundary value problem (l-3) can be obtained 
for the following functions occurring in the initial and 
boundary conditions (3): 

$I, = +,(rl), $,g = i&f); LV = 0. (22) 

The last condition in (22) implies that the boundary 
condition at 5 = O(3), written in terms of the variables 
(4), (S), depends only upon the cyclic variable w, i.e. cp 
= q(w) ; in particular, this condition is satisfied by cp 
= const. 

By virtue of (9), (15) and (16), the solution of the 
problem (1-3) and (22) as well as the local diffusional 
flux to a reacting surface in Case (a) can be presented as 

c = ;I(w)c, + ;I( -w)cp, (23) 

J(a, b) E J(o; (I, b) = [u( Y)Y'Jx zo. (24) 

Here, the function Y(x,a, b) is the solution of the 
following ordinary differential equation 

[a(Y)Y’& + 2xY; = 0; Y(0) = a; Y(+ z) = b, 

(25) 

which depends upon the parameters a and b. 

In Case (b) the solution of the problem (l-3) and 
(22) is prescribed by c = c,, where c, is defined in (23). 

Equation (25) occurs frequently in the problems of 
non-linear heat conduction and filtration Cl55171 and 
its solution has already been obtained for many 
relations 0 = a(c). 

It should be noted that since the form of the 

variables (4) and (8) does not depend upon the 
diffusion coefficient (thermal diffusivity) a(c), solutions 

of a number of specific problems can be obtained by 
directly combining familiar solutions of equation (25) 
for different modes of flow past droplets, bubbles, 
liquid films, etc. (see e.g. [l&12]). The mode of flow will 
then determine only the form of the variables (4), (8) 

entering into equations (23), (24). 
With the above discussion in mind, let us point out 

the solutions of the problem (25) which appear for 
some frequently encountered specific relations u = 
a(c); Sections 8810 are devoted to some physical 
statements of the problems which correspond to 
different types of flow and define the form of the 

variables (4) and (8). 
In the simplest linear case, at the constant diffusion 

coefficient (T = go, the solution of equation (25) is 

Y(x, a, b) = a + (b - a) erf 

Now consider the most frequently encountered 
linear dependence (approximation) of the diffusion 
coefficient (thermal diffusivity) on concentration 

(T(C) = fJ,(l + KC). (27) 

The replacement 

1 +KY 
(28) 
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reduces the problem (25) and (27) to 

(uu;): + 2zu: = 0; @J(O) = E,, U(Z) = 1, 

i = (1 + ~a)(1 + Icb)-‘. (29) 

Introduction of the new variable [ 171 makes it possible 

to represent the solution of (29) in parametric form as 

u = u(p) = dz 
P 

d@’ 
z = z(p) = 

J 
udp, (30) 

0 

where the function z(p) is the solution of an auxiliary 

problem 

z;(o) = i, Z’,(X) = 1. (31) 

The problem (31) is frequently encountered in the 
theory of hydrodynamic boundary layer ; for IL = 0 its 

solution was obtained by Blasius (see e.g. [19]). The 
case 1. # 0 was considered in [20, 213. 

For practical purposes the greatest interest attaches 
to an equation for the diffusional flux (24) which is 
defined by the expression for J. Using the formula 
(du/dz),=, = (u;/z&,=, and the results of [20] we 
obtain 

(32) 

Here the function R = R(i) is defined by the equa- 
lity z’;,(O) = R(l), has the properties R(0) = 0.33206, 
R(1) = 0 and is shown in Fig. 4. 

At i. z 1 the function R is determined from the 
asymptotic equation [20] 

i-1 - 1 = 1.7725 - 0.595’, 5 = i-3i2R. 

Note that the problem (29) has been studied by 

numerical and approximate analytical methods in 
[17, 221. 

In a number of problems (associated, for instance, 
with adsorption) the following expression for the 
diffusion coefficient can be met 

FIG. 4. The curve R = R(1) [20]. 

CT(C) = O,(l - KC)-' (K 2 0). (33) 

According to [16, 231 the solution of the problem 

(25) and (33) can be presented as 

Y = ~-‘[l - (1 - icb)em2”], 

(;.’ - P Ini.‘)- ’ ” di., 

(1 I w 5 + ‘X). (34) 

The dependence of Y = Y(w), x = x(w) on ~(34) 

parametrically determines the form of the function Y 
= Y(x), with the value of the parameter P = P(Q) 
being found by solving the transcendental equation 

1nQ = - 2E(l, P) [P(O) = 01. (35) 

Figure 5 shows the function P = P(Q) which 

corresponds to equation (35). 
Taking into account that to the reacting surface x = 

0 there corresponds the value of the parameter w = 1, 
we obtain the following equation for the quantity J, 
which defines the diffusional flux (24), 

J(a, b) = K- ’ [8a,(l - KU)]‘~’ 

(36) 

An exact analytical solution of the problem (25) at b 
= 0 is suggested in [23] for the following dependence 
of the diffusion coefficient upon concentration (see also 

[WI: 
a(C) = rJ,(l + KC + VC2)-‘. 

For thermal problems, in the case of exponential 
dependence of thermal diffusivity upon temperature, 

a(c) = rJ&“, n > 0 (37) 

the solution of the problem (25) and (37) at b = 0 is of 

the form (see e.g. [ll, 241): 

Y(z) = 
a(1 - z)““p(z,n)p-‘(O,n) at 0 <z I1 

0 at llzlx 

(38) 

0.8 - 

0.6 - 

0.4 - 

-2.0 -1.5 -I 0 -0.5 0 05 1.0 1.5 2.0 2.5 

In P 
FIG. 5. Relationship P = P(Q) obtained by the solution of the 

transcendental equation (35). 
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X 

z = q(n)&2 p(z,n) = i: UkZk, 
k=O 

q(n) = [np”(O, n,] - l ,z, cc0 = 1, 

1 
a I= 

-iqizij 

c( _ _ c( 1 + 0.5a,(6nz + n - 3) 
2- 1 

3(2n+l) ’ “.. 

The function (38) is a generalized solution of the 

problem (25) (36) and has a discontinuous derivative 
at z = 1 (the flux a(c)?c/J< in this case remaining 
continuous); q(1) = 1.143 [17]. 

A detailed description of the procedure of numerical 
integration of equation (25) as well as the results of 
integration for the case of exponential dependence of 

the diffusion coefficient upon concentration, a(c) = crO 
exp (KC), are presented in [25]. 

When the diffusion coefficient depends arbitrarily 
upon concentration, one can use numerical or approx- 
imate, analytical methods for the solution of the 
problem (25) [lS, 161. Thus, one can employ the 

following approximate iterative method to determine 
the function Y [15, 161 

Y,(x,a,b) = a + (b - a)H 

Here, as an initial iterate Ye we take the solution (26) 
which corresponds to the constant diffusion 

coefficient. At m = 1 equation (39) yields rather 
satisfactory results at small values of the derivative 

l&/& << 1. 
Moreover, when the diffusion coefficient is restricted 

over the entire concentration range, the function 0 = 
(T(C), depending upon its form, can be approximated 
according to equation (27) or (33) by a suitable choice 
of the ,free parameters go and K. 

Remark. For an unsteady state flow in Case (b) it is a 
sound plan to consider also the solutions of equations 
(1) and (2) satisfying constant boundary conditions on 
the particle surface and at infinity. Then the equation 

yields the solution of the problem (1) and (2) subject to 
the boundary conditions 

5 =O, c=a;<+ %, c --t b(a, b = const.) 

and the initial condition which corresponds to sta- 
tionary concentration distribution in the flow Q(0, q) 
at t I 0. This type of a problem describes mass and 
heat transfer of the particle moving with a variable 
velocity at t > 0 which was initially at rest [8, 91. 

7. COMPUTATION OF THE MEAN SHERWOOD NUMBER 
AND OF THE INTEGRAL DIFFUSIONAL FLUX TO A 

REACTING SURFACE 

The mean Sherwood number Sh and dimensionless 
integral diffusional flux I are determined by 

I=ShS= [sjdsk=j, ldrj. (40) 

Here s and S are the surface and (dimensionless) area of 
the reacting particle surface. 

Let us consider the specific case of the initial and 
boundary conditions (3), (22) 

$, = A,, $B = A,, cp = B(A,, A,, B = const.). 

(41) 

Now, let us keep in mind that the local diffusional flux 
j”, corresponding to the linear problem 0 = 1, (24) and 

(26), in Case (a) at A, = A, = 1, B = 0 in (22), (41) has 
the form 

j” = x(wli,O + X(-WV,“, 

jt = c-‘f(n~,)-‘~~; y = a,fi. (42) 

Comparison ofequations (24), (41) and (42)gives the 

following expression for the local diffusional flux to the 
particle at an arbitrary dependence of the diffusion 
coefficient on concentration for any values of the 

parameters A,, A, and B in (41) 

Jn Jr 
j = 2 x(w)J(B, AJ: + 2~( - w)J(B, A&. 

Integration of this relation over the particle surface s 
yields 

I = Sh S = &o)l, + x( -w)lp, 

I = &, A,, A,, B, t), 

Jn 
I, = 2 J(B, AX’, (43) 

I, = * J(B, A,)$. 

Here I0 = x(0)1: + I( - w)lj is the integral diffusional 
flux corresponding to the linear problem 0 = 1 at A, 

= A, = 1, B = 0, i.e. I0 = 1(1, 1, 1, 0, t). 
In Case (b), the formula I = I,, where I, is defined in 

(43), should be used for the integral flux. 

Equations (43) allow an effective calculation of the 
integral diffusional flux and mean Sherwood number 
when the diffusion coefficient is an arbitrary function 
of the concentration provided appropriate expressions 
for the linear problem (a = 1) are known as well as the 
functions J (24) which are determined by solving the 
ordinary differential equation (25). Thus, for the 
specific cases of the diffusion coefficient dependence 
upon concentrations (27) and (33) the functions J are 
determined by equations (32) and (36). Moreover, a 
number of linear problems are available at present for 
which the value of I0 has already been calculated (see 
e.g. [l, 2, 7-91). 
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8. UNSTEADY STATE DIFFUSION TO A SPHERE (DROPLET) 
IN TRANSLATIONAL AND SHEAR FLOW 

Consider now some specific cases when the function 

R (2) can be represented as a product of two factors. 

Q(t,rl) = U(t)X(rl), Y = g(q). (44) 

In this case it is convenient that the variables w andJ 
(4) and (8) be taken in the form 

w= - I: Udt+ j.+‘d,l, f=X(q). 

(45) 

Formulae (45) are more practical than (11); they can 
be obtained directly from equation (8) (see remark at 
the end of section 4). 

It should be noted that if any specific solution of the 

last equation from (8) is known r0 (e.g. TV or 7&, the 
variables 7, and tp (13), (14) for the solution of specific 
problems can be also determined in another manner 
on the following simple grounds. For any function Z 
the expression 7. + Z(w) is also the solution for the 

last equation from (8). Therefore, by virtue of the 
boundary conditions (12) the variables T, and zp are 

determined by T%,~ = 7. + Z,,(w), where the explicit 
form of the functions Z, and Z, is found by solving the 

equations 

[TV + Z,],=o = 0 and [TV + Zp],,l=o = 0. 

As an illustration of the method suggested let us 
determine the quantities occurring in (22) and (23) for 
the unsteady state heat and mass transfer of a sphere 
moving in an ideal liquid with the velocity LJ,CJ(t) 

V(r) = (1 + IQ-‘, y 2 0. (46) 

The dimensionless variables and the coefficients in 

equation (1) and (2) are determined then [7] by 

5 = r - 1, g = sin%, R = +J(t)sin%, (47) 

where the characteristic scales are taken to be the 
sphere radius a, and its tripled velocity at time zero, U, 
= 3U,; r, Q is the spherical coordinate system fixed at 
the sphere center; the angle 0 is calculated from the 
forward stagnation point of the sphere. 

Suppose one side of the sphere surface 0 10 IO,,, 
0 <Q. <n in the vicinity of the flux incidence point 
contains a varnished inclusion (Fig. 6) (which cor- 

responds to the boundary condition 5 = 0,O 5 0 5 Bo, 
&/a< = 0), while the other side, in the region B. < 0 5 
n, absorbs the substance completely which corres- 
ponds to cp = 0 in the boundary conditions (3) and 

(22). 
Using equations (13), (14), (44) and (45) for the 

variables (4), we obtain (11, = BO): 

w(t, O,Q,) = w,(l,0) - wJO,0,), f= i sin2Q, 

w,(t, 0) = Sln v(t) + In tg2 4 (q = e - Q,), 

FIG. 6. Scheme of flow around a sphere (hatched area 
corresponding to a varnished inclusion), 

7, = 4e-Y’ot 
[ 

B(S(w,), 2 + y, 2 - y) 

S(w,) = (1 + ewe)- ‘, 

WW,q) = 1P-’ (1 - @-l dl. 

Here B(x, p, q) is the incomplete beta-function. 
In the specific case of a steady state flow u(t) = 1, 

taking into account 

lim [U(t)]-‘/’ = e’ 
y-0 

and taking the limit as y --* 0 in (46), we obtain from 

(48) 

7p = T(COSo)- T(COSo,) 

7(x) = ; (2 + x)( 1 - x)*, 

(49) 

Equations (47) and (49) at U 3 1 also correspond 

to the unsteady state diffusion to a spherical droplet 
in a translational Stokesian flow (the Hadamard- 

Rybchinsky stream function) moving with the velocity 
U, at infinity provided the characteristic scale is taken 

to be U, = U, p,(pL1 + pJ1, where p’l and p2 are 
dynamic liquid velocities inside and outside of the 

droplet. 
In the simplest linear case o = 1, when motion of a 

sphere in liquid is governed by (46) and (47) for the case 
(41) at B = 0, the solution of the problem (l-3) and 
(47) in the region B. 2 0 2 7~ is, by virtue of (48), of the 
form 

c = A,x(w)erf(!*) 
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+ A,X(-“‘)erf(~$!) (50) 

(0 < 8 5 Bo, c = A&. 

Now, investigate the limiting behaviour of the 
solution (50) at B0 -+ 0. Taking into consideration the 

property 

lim o(t, 8, %,) = + M_ 
00-O 

and proceeding to the respective limit in (SO), we obtain 
that concentration distribution in this case is con- 
tinuous and is described only by the first term of 
equation (50) [which corresponds to A, = 0 in (SO)]. 
This means that at Ho = 0 (which is consistent with the 
absence ofavarnished inclusion on the sphere surface), 
the concentration distribution in the flow is fully 
determined by the initial condition (3) alone, i.e. one 
cannot impose at a time the initial condition at t = 0 
and the boundary condition at 6 = 0. 

The above example is an apt illustration of the 
results of Section 4; at B. # 0 the problem (l-3), (46) 
and (47) corresponds to Case (a), while at 6, = 0, to 

Case (b). 
In a similar fashion one can show that the function 

[where 7X is determined in (49)] is the solution to (l), 
(2) and (47) at U(t) = 1 corresponding to a non- 
uniform initial distribution of concentration in the 

fluid flow t = 0, c = h(cos %) and to the condition of 
complete substance absorption on the sphere surface. 
This expression generalizes the results of [l, 2, 61 

where the case h = const. was considered. 
When a sphere moves with a variable velocity U(t), 

the variables (4) are determined from equations (44), 
(45) and (13), (14). The respective solutions of non- 

linear problems (l-3), (27), (33), (37), (46) and (47) are 
specified by equations (23) (30) (31) (34) (36), (38) 
and (48). 

It should be noted that equations (46) and (48) can 
be used as a basis for approximate integration of 
equations (l-3) and (47) in case of an arbitrary 
function of sphere motion, U(t). For this purpose, by 
differentiating (46) with respect to t, determine the 
parameter jt in terms of the function U(t) 

y = dll-‘(t)/dt. (51) 

It is the substitution of the expression y = y( U(t)) into 
(48) that yields approximate relationships for the 
variables (4). In the particular case of the steady state 
motion of a sphere or motion following (46), equations 
(48) and (51) are exact. 

The integral diffusional flux 1’ (at B. = 0), cor- 
responding to the stationary flow field U = 1 at 0 = 1, 
in the case of sudden reaction occurrence is calculated 
in [l, 2, 71. This allows determination of the integral 
flux 1 from equations (24) (32), (36) and (43) in non- 
linear problems corresponding to (27) and (33). 

For a droplet in a steady state shear Stokesian flow 
(Case b), the functions occurring in (1) and (2) have the 
form 

5 = r - 1, q = 0, g = sin’%, fi = 3 sin’% cos 8. 

(52) 

Here the characteristic velocity scale is taken to be U, 

= CUZ,~, (pi + p2)-l, a is the shear factor. 
By virtue of [8] and the results of Section 7 the 

integral diffusional flux, in case the diffusion coefficient 
is an arbitrary function of concentration and there is a 

sudden occurrence ofreaction on the droplet surface, is 

determined from 

& 1 = I, = +&4)$ 1; = 4[3nPe cth(3t)]1’2. (53) 

Equations (32) (36) and (53) determine the integral 
flux to the droplet surface for linear and hyperbolic 
dependence of the diffusion coefficient upon con- 
centration (27) and (33). 

9. UNSTEADY STATE DIFFUSION TO THE FILM SURFACE. 

PERIODIC REGIMES 

Consider a convective diffusion to the surface of a 
film falling down a wall in the periodic regime. It is 
often the case that the hydrodynamic model of film 
motion leads to the following expression for the 
velocity components in equations (1) and (2) [3, 4, 6, 
261: 

n = R(y), y = rj - vt, g = 1 (v > 0). (54) 

Here a(y) = Q(y + To) is a certain (arbitrary)‘periodic 
function y with the interval To, the specific form of 
which is determined from solution of the respective 
hydrodynamic problem. 

In a general case the variables (4) corresponding to 
(54) can be obtained from equations (1 l), (13) and (14). 

Then, distribution of concentration for the developed 
periodic regimes with a steady supply of reagent at the 
point of entry into the reactor, which corresponds to 
the boundary conditions 4 =O, c = tja = 6; 5 = 0, 

c = cp =a@, b =const.) is determined, for equations 
(1) (2) and (54) by the equality c = cp, where the 
function cg is defined in (23), (25), while the variablesf 
and tu are specified by equations (1 l), (14). In the linear 
case, 0 = 1, such problems were considered in [3,4,6]. 

Let us obtain some other exact time-periodic sol- 
utions of the problem (1) (2), (54). In terms of the new 
variables r) and y the differential operator L (5), (54), 
which determines the form of the variables (4) and (8), 
acquires the form 

L = (!A - v); + h& (cq = n’,,. (55) 

Therefore, it is convenient to choose the variables 
(4), (8) in this case in the form 

f(Y) = R(Y) - v> 

w=‘1-y-u 
s 

‘f-‘dy, 70(y) = by. (56) 
0 s 0 
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When writing equations (56) it was assumed that 
R - v > 0; TV is a particular solution of the last equation 
in (8), (55). In order that the final form of the variable T 

be chosen, let us avail ourselves of the remark made at 
the beginning of Section 8, i.e. that the genera1 solution 
of equations (8) and (55) for T has the form 

T= S:/dp+Z(‘i-*-v~~/Ldy). (57) 

Here 2 = Z(w) is an arbitrary function the specific 
form of which is determined from the condition of 
periodicity of the variable (57) in y (or, equivalently, in 
t). It follows from the condition z(y, q) = r(y + To, q) 

that the function Z will generate the equation 

Z(w) = Z[o - T,(l + v <f-l > )] + To <f>, 

<h> e; 
s 

TO 
hdy. (58) 

0 0 

The solution of equation (58) is sought in the form 

Z(w) = po + q (p, q = const.). (59) 

Substitution of (59) into (58) leads to the following 
value of the coefficient p 

p= <f>(l+v<f_I>)_‘. (60) 

As would be expected, the coefficient q in this case is 
an arbitrary additive constant. 

With regards to (57-60) we obtain for the variable T 

r= ‘fdy+ 
s 0 

l+~~~_'>(~-l.-v~~~-ldy)+q 

= 

s 
Yfdy + 
0 

1 +vv;~l > (t- [;f-'dy)+q, 

y = q - vt. (61) 

Now, selecting the parameter q so that the inequality 
T > 0 is valid, we obtain, for any function R, the one- 
parametric set of solutions of equations (l), (2) and 
(54), which satisfies the boundary conditions < = 0, c 
= a;( = x’,c = b,intheform 

c = Y(&,“.b). (62) 

The variablesfand T in the above equation have been 
defined by equations (56) and (62), while the function 
Y(x, a, b) is the solution of the problem (25). 

By virtue of (24), (25), (56) and (61), the local 
diffusional flux to the film surface, corresponding to 
the solution (62), at q = O(1) and q-* rc, has the form 

l+v<f-‘> 1/Z 
X 

<f> > 
~(Y)v-~“. (63) 

This expression shows that at q + zc the local 
diffusional flux decreases inversely proportional to the 
square root of the distance from the entrance to the 

reactor, with the proportionality factor depending 
upon the mean values off and f- ’ in the oscillation 
period. 

Equation (63) gives the expression for the mean local 
diffusional flux : 

1 
?+ G <j > = 2Pe’~2J(0,a,b) 

x [<f> (1 + v <f-l >)]1’2q-1*2. (64) 

It can be shown that at q + X’ these very equations, 
(63) and (64), define the principal term of the asymp- 
tote to the quantities j and <j> obtained for the 
developed periodic mode of diffusion with a steady 
state supply of reacting substance at the boundary 
conditions <=O, c=a; q =0, c= b. The case of the 
linear problem, B = 1, corresponds to J = 2n- 1 ” (b - 
a) in equations (63) and (64). 

At R - v < 0, the variablef is chosen in the formf = 
v - R, while the variables o and T are obtained from 
equations (56) and (61) by substituting -fforf: 

10. UNSTEADY STATE DlFFUSlON IN THE CASE OF 
ARBITRARY KINETICS OF SURFACE REACTION 

Now consider the process of unsteady state con- 
vective diffusion to a droplet (bubble, liquid film) with 
the surface chemical reaction occurring on its surface 
with the final rate k’F,(c,), where k’ is the reaction rate 
constant, F, is the “reaction law”. 

A corresponding boundary value problem is de- 
scribed by the linear equation for concentration in the 
bulk of the liquid A(c, 1) = 0 and by initial and 
boundary (at q = 0)conditions (3)and (41). Moreover, 
that the formulation of the problem be completed, it is 
necessary to add an equation for the surface con- 
centration distribution 

<=O, 2+-$$ = -kfF,(c,)+D$(65) 

5 = 0, c = l-c,. (66) 

In writing equation (65) the term D,A,,c_ which 
describes molecular surface diffusion, was ignored and 
it was assumed that there is phase equilibrium between 
the bulk and surface concentration (66); r is the Henry 
constant. For convenience, all the equations and initial 
and boundary conditions are presented in dimensional 
form which formally is equivalent to the replacement 
E=,/D at a=1 in equations (1) and (2) and the 
variable c (4). 

Turning to the variables (4), (1 l), (13) and (14), with 
regard for (65) and (66) and a/aT = f- ‘L, we obtain the 
following problem for concentration distribution 

ac as 
.T=o, z=s’ c=A (67) 

F(C) = k’l- F,(T- ‘c). 
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Here the subscripts a and /?, corresponding to adjacent 
regions located on each side of the curve w = 0 in the 
plane q, t (Fig. 2), on thevariable 7 and the parameter A 
are omitted. 

The solution of the problem (67) is sought in the 
form 

c(wi,t) = A - ;1-n 
(68) 

Here c is the solution of equation (67) and it satisfies 

the initial condition at 7 = 0 for any limited kernel 0; 

then the following limiting relations [27] hold : 

limc=C=A-i 
r @(co, A) dI 

c-0 J7I s 0 J(7 - i) ' 

t$ $ = @k&t). (69) 
/ 

Substituting equation (68) into the last boundary 

condition in (67) and taking into account the proper- 

ties (69), we obtain a system of equations to determine 

the limiting concentration C = c(w, 0, 7) = c(t, 0, ‘I) 

and the kernel @ 

Solving the first equation of this system for Q, and 
substituting the respective expression into the second 

equation, we obtain the integro-differential equation 
for the function C: 

(70) 

For a steady state flow the following equalities hold 

tp = ra(q) and f a/&, = d/at + f 3/d7p, 

which makes it possible in Case (b) [which cor- 
responds to 7 = 7, in (70)], on having replaced x = 1 
+ tP[ T(w)] in the integrand, to write equation (70) in 
the form 

1 

c = A - T&D) 

f*(7p) =Ao(7,)1? 7p = 7&q). (71) 

Now, let us analyze one particular case offlow when 
equation (71) is integrated explicitly. To this end, 
consider a plane steady state flow of an idea1 incom- 
pressible fluid in the region 5 2 0, q 2 0 which is 
determined by the stream function 

Y = S&l, g = 1 (Q = SQ 6 = const.). (72) 

The new variables (4), (1 l), (13) and (14), entering 

into equation (71) and corresponding to the non-linear 
non-stationary problem (I), (2), (65), (66)and (72) have 
the form 

w= -t+K’lnq, ,f=6~, tp=6v2/2, 

T(w) = e6c’J, f*(x) = (26x)1/2 (73) 

By passing to a new integration variable z = x7, ' in 
the integral (71), the solution ofequations (71)and (73) 
is sought in the form C = C(t). With regard for the 

equality 7&q) 7;' (T(w)) = em"', this yields the 
following ordinary differential equation for the limit- 
ing concentration : 

1 

c = A - rJ(2nsD) 

x 7t - B(eez6’,- $I($ + F(C)). (74) 

Equation (74) is easily integrated explicitly in the 
case of the lst-order surface reaction F(C) = kc; here, 
just as in the general case, the following natural 
condition C(0) = A should be chosen as an initial 

condition for the surface concentration. 
It should be noted that even though equation (74) 

for the limiting concentration has been obtained in the 

diffusion boundary layer approximation (1) and (2), 
yet it is an exact solution of the complete convective 
diffusion equation 

&/dt + (vV)c = DAc; L’: = -%‘/dq, 

This can be verified directly by substituting the 
expression for the stream function (72) into (75) with 
regard for the fact that the solution of the problem (72), 

(75) is independent of the transverse coordinate q, i.e. 

c = c(t, 5). 
Equation (74) also describes the dependence of the 

limiting surface concentration upon time at the for- 

ward stagnation point of a spherical droplet 0 = 0 in a 
steady state translational Stokesian flow ; in this case 

the parameter 6 in equation (74) should be set equal to 

6 = uo P,C2%(P(, + P2)l-l. 
For a stationary nonlinear boundary condition on 

the droplet surface the solution of the problem 

A(~, I) = 0; 5 = 0, k/at = R,(C) 

subject to the initial and boundary (at q = 0) 
conditions (3) and (41) is reduced to the solution of the 
following integral equation for the limiting concen- 
tration [ 1 l] 

It should be noted that equation (68) at @ = t$-‘H 

gives the solution of the linear boundary value problem 
A(c, 1) = 0 with the initial and boundary (at q = 0) 
conditions (3), (41) for the case when the local flow on 
the reacting surface is prescribed in the form 
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5 = 0, adat = md, 

where H is the known function. 

11. STATIONARY CASE. CERTAIN CORRELATIONS 

For the stationary problems (1) and (2) [a/& = 0, 
R = Q(q), g = g(s)] subject to the boundary con- 
ditions 

rl=o, c=A; <=O, c=E(A,B=const.) 
(76) 

it follows from the results of Section 7 that the integral 
diffusional flux to the droplet surface is determined by 

(77) 

Here I0 is the integral diffusional flux corresponding 
to the linear (a = 1) stationary problem (1) and (2) 
subject to the boundary conditions (76) at A = 1, B = 
0; the formula for I0 is presented for an axisymmetric 
case. In Case (b) the first boundary condition (76) 
should be replaced by the condition at infinity 4 + m, 
c + A. 

In the case of an arbitrary dependence of the 
diffusion coefficient on concentration, equations (77) 
can correlate the results of the works [ 14,281 obtained 
for a chain of droplets (bubbles). In particular, for a 
chain of droplets of equal radius located at a (non- 
dimensional) distance 1 from each other on the axis of 
the translational Stokesian flow (Fig. 7), provided that 

O(1) < I < O(E_l), 01 I a(c) I a,; 

0 < crl I a2 < m, 

the following formulae are valid for the integral 
diffusional fluxes at the droplet surfaces 

I, = I,[m”Z - (m - 1)“2] (m = 1,2,...). (78) 

Here m is the ordinal number of a drop ; the 
numbering starts as shown in Fig. 7. 

For a stationary problem similar results can also be 
obtained for a chain of solid spheres in a Stokesian 
flow. The stream function in thevicinity of surfaces will 
be quadratic in 5 and will have the form Y = t2Q. By 
using the same sort of reasoning as in [29, 301, we 
obtain the following formulae for the integral 
diffusional fluxes : 

I, = I, [r?P - (m - 1)2’3] [O(l) < 1 < O(Pe”‘)]. 

(79) 

Equations (78) and (79) show that in the general case 
of an arbitrary dependence of diffusion coefficient 

upon concentration the ratio, I,/I,, of the integral 
diffusional fluxes to droplets or solid particles of the 
chain does not depend on the diffusion coefficient a(c). 

Here, just as in the linear case, the integral mass 
transfer in the chain is strongly retarded by interacting 
diffusional wakes and boundary layers of particles in 
the chain. 

It should be emphasized in conclusion that the 
procedure of introduction of new variables (4) and (8) 
can be applied to analyze similar, but more complex, 
boundary value problems (and the systems of equa- 
tions), to those presented by equations (1) and (2). 
Thus, it can be used for the study of a number of 
processes of simultaneous heat and mass transfer. 
Moreover, in the case of a compressible fluid one can 
use a more general (than (4) and (8)) method of 
introduction of new independent variables which 
makes it possible to analyze the corresponding prob- 
lems of the unsteady state boundary layer. Namely, if 
the fluid velocity components at the particle surface 
(t-0) can be approximated as 

u< = 5W V), UV = Wt, rl), (80) 

then, to simplify equations (1) and (80) (it is supposed 
here for simplicity that the metric coefficients have 
been chosen conventionally grc = g,,,, = l), one should 
introduce the new variables (4) and require that the 
functions w,L z would satisfy the equations 

L*w =o, Ly= - VA 
Lag =s; L* = a/h + ~c’pf. (81) 

It is seen that the systems (8) and (81) are quite 
similar in structure. The function f = f(t, q) should 
therefore be determined from 

f= exp { - [ (~)~U~d~}~ (82)_ 

while the variables w and z are prescribed by equations 
(10),(11),(13),(14)and(82)atg = l.Equations(l)and 
(80), on employing substitutions (4) and (81). are 
reduced to equation (9). 
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RESOLUTION DE QUELQUES PROBLEMES NON-LINEAIRES DE COUCHE LIMITE 
(THERMIQUE) INSTATIONNAIRE ET CONTROLEE PAR LA DIFFUSION 

Resume-On suggere une mtthode analytique exacte pour la resolution dune large classe de problemes de 
couche limite instationnaire qui decrivent les micanismes de transfert convectif de chaleur et de masse des 
particules dans un fluide incompressible et visqueux avec des gouttelettes (bulles). La methode se rtvele aussi 
adaptee pour les micanismes de transfert au voisinage de l’interface liquide-fluide (comme pour les films 
liquides). La methode est basee sur I’introduction de quatre nouvelles variables independantes specifiees par 
un systeme d’equations aux d&v&s partielles du premier orde qui admet une solution g&r&ale du probltme 
lineaire avec des conditions initiales et aux limites arbitraires. De plus, il est possible d’obtenir une large classe 
de solutions de problemes non-lineaires dans le cas od le coefficient de diffusion (diffusivitt thermique) est une 
fonction de la concentration (temperature). 

Une solution getterale est obtenue pour un probleme lineaire, similaire et instationnaire connectt a une 
reaction chimique du premier ordre dans le fluide. On etudie la diffusion a la particule pour une vitesse 
arbitraire de reaction sur sa surface. 

On montre que la solution de l’equation de couche limite instationnaire peut avoir une forte 
discontinuite qui se deplace a une vitesse terminale. 
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EIN VERFAHREN FUR DIE L&SUNG VON NICHTLINEAREN RANDWERTPROBLEMEN 
EINER NICHTSTATIONAREN DIFFUSIONSBESTIMMTEN (THERMISCHEN) 

GRENZSCHICHT 

Zusammenfassung-Ein exaktes analytisches Verfahren zur Losung einer weiten Klasse von instationlren 
Grenzschichtproblemen wird vorgeschlagen, welche die Vorgange des konvektiven Stoff- und Warmeiiber- 
gangs von Teilchen in einer idealen Fliissigkeit und Tropfen (Blasen) in einer viskosen inkompressiblen 
Fliissigkeit beschreiben. Das Verfahren ist such auf die Berechnung von Ubertragungsvorglngen 
anwendbar, die in der Umgebung einer Gas-Fliissigkeitsgrenze (d.h. in Fliissigkeitsfilmen) auftreten. Die 

Methode basie:! auf der Verwendung von vier neuen unabhdngigen Variablen, die durch ein System 
partieller Differentialgleichungen erster Ordnung bestimmt sind, wodurch eine allgemeine Losung des 
linearen Problems bei beliebigen Anfangs- und Randbedingungen ermoglicht wird. Zusltzlich bietet sie die 
Moglichkeit, eine weite Klasse nichttrivialer (und nicht Ihnlicher) Liisungen von entsprechenden nichtlinea- 

ren Randwertproblemen fur den Fall zu erhalten, da8 der Diffusionskoeffizient (die Temperaturleitfahigkeit ) 
eine Funktion der Konzentration (Temperatur) ist. 

Eine allgemeine Losung erhalt man fur ein ahnliches lineares instationlres Problem, das mit einer 
chemischen Reaktion erster Ordnung im Fluid verbunden ist. Dabei wird der Vorgang der konvektiven 
Diffusion an einem Teilchen bei beliebiger chemischer Reaktionsgeschwindigkeit an dessen Oberllache 
untersucht. Es wird gezeigt, da8 die Liisung der instationtiren Grenzschtgleichung eine starke Unstetigkeit 

aufweisen kann, die sich bei der Endgeschwindigkeit verlagert. 

METOn PEIIIEHMII HEKOTOPbIX HEJIMHEHHbIX KPAEBbIX 3AAAY 
HECTAHMOHAPHOl-0 ~M@~YSMOHHOl-0 (TEHJIOBOI-0) fIOfPAHHqHOl-0 CJIOR 

Amioraunn-B pa6ore npennaraercn ToqHbIl aHanuTeqecKaR MeTon peureHnn unipoKor0 Knacca 

HeCTaUnOHapHbIX nOrpaHCJIOtiHbIX 3aAa'I, OnucbIBaIOIItBX npOIteCCb1 KOHBeKTHBHOrO MaCCO- II TenAO- 

06MeHa qacTuu B aaeanbHoA A Kanenb (ny3bIpel) B Bs3~oiI HecmeMaeMoii XOIAKOCT~. YKa3aHHas 

npouenypa nperoAHa TaKxe nm aHaJni3a npoueccoa nepenoca,npoacxonnqux B 0KpecTHocTu nosepx- 

~0~~npa3ne.13bt Tuna xoiAKocTbbxoInKocTb(ra3)(HanpIfKfep,~ nneHKax NIAKOCT~). MeTon 0cHoBaH ~a 
BBeAeHnn HOBbIX qeTbIpeX He3aBACRMbIX nepeMeHHbIX, yAOBAeTBOpsIOIIIuXCHCTeMe ypaBHeHufi B YaCT- 

HbIxnpou3BoAsbIxnepBoronopmKa,ano3BonneTnony~~Tbo6ureeperueH~e nuneibioii sanaqs~cnyvae 

npOU3BOAbHbIX HaqaJIbHbIX u rpaHWIHbIX yCAOBufi. KpoMe TOrO OH AaeT BOJMOTHOCTb nO,IyWTb 

IIInpOKIifi KAaCC HeTpEiBHaJIbHbIX (II HeaBTOMOAeflbHbIX) peIIIeHIIfi COOTBeTCTByIOIItAX HeAuHe~HbIX 

KpaeBbIX 3aAa'I B CJIy'Iae, KOrAa KO3~@IuHeHT AN+$yJIiA (TeMnepaTypOnpOBOAHOCTn) JaBHCHT OT 

KOHueHTpauuu(TeMnepaTypb1). 

nOAyqeH0 o6tuee pememie asanore=mofi nenei%fo8 uecrauuouapuoi7 sanaqu npa IIpOTeKaHnH 

a x~~AKOCT~ 06be~~oti xuMnsecKol peatouia nepaoro nopnnra. Mccnenyercn npouecc KoHBeKTnBHofi 

A~~~y3~~KnOBepXHOCTB~aCTUubInp~npOli3BO~bHO~KItHeT~Ke nOBepXHOCTHOilXuMWIeCKOii ~aKUn&ft. 

lloKa3aHo.qTo peureuse HecTaunoHapuoro ypaBHeusa norpausrHor0 cnoa MomeT uMeTb CHAbHbIfi 
pa3pbIB,KoTopbIiI nepeMemaeTca ~KoHe~Ho~cKopocTb~0.YKa3aHo o6o6qeHue MeToAa nnn aHaJIornq- 

HbIx3aAaq HecTauuoHapHoro Macco- aTennOO6h4eHa B cmnMaeMofi winKocm, a rakxe npu nanmimi 
BAyBa HJIA OTCOCa XGiAKOCTW Ha l,earnpyIOIIteii nOBepXHOCTH. 

npeA.UOwteHHbIfi MeTOAuCnOAb3yeTCs AAR peIIIeHus pIIAa KOHKpeTHbIX 3aAaq. nOApO6HO MccneAy- 
e-rcs cnyqafinrinefinoB u ranep6onaqeckoA 3aBucuMocTn K03$+nuienra An$41y3nn 0T KonueHTpausa. 


